当数据预处理完成后,我们就要开始进行特征工程了。 1 Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法。它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 ...
. Filter过滤法过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法。它是根据各种统计检验中的分数以及相关性的各项指标来选择特征。 . . 方差过滤 . . . VarianceThreshold 这是通过特征本身的方差来筛选特征的类。比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什 ...
2019-04-22 15:38 0 3052 推荐指数:
当数据预处理完成后,我们就要开始进行特征工程了。 1 Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法。它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 ...
3.1.2 相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了。我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息。如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会给模型带来噪音。在sklearn当中,我们有三种常用的方法来评判特征与标签之间的相关性 ...
一、绘图判断 一般对于强相关性的两个变量,画图就能定性判断是否相关 散点图 seaborn.scatterplot # 散点图矩阵初判多变量间关系 da ...
数据分析的流程: 1 特征选择 2 模型、算法 3 评价指标 怎么做整理:一是从项目中,做一个项目总结一个方法;二是平常最常用的。 会飞的蜗牛: https://www.cnblogs.com/stevenlk/p/6543628.html#41-%E5%9F%BA%E4%BA ...
使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。 方差过滤可以使用在巨大的稀疏矩阵中,稀疏矩阵中可以考虑将方差的过滤阈值设置为0,这样就会 ...
# 过滤式特征选择法的原理 使用发散性或相关性指标对各个特征进行评分,选择分数大于阈值的特征或者选择前K个分数最大的特征。具体来说,计算每个特征的发散性,移除发散性小于阈值的特征/选择前k个分数最大的特征;计算每个特征与标签的相关性,移除相关性小于阈值的特征/选择前k个分数 ...
有时候,数据集中的某一个特征,方差非常小,非常接近,这样导致的结果就是,没有区分度,那么这个特征其实就不是一个好的特征,因此方差过滤的思想就是,找到那些有区分度的特征(方差大) 如果一个特征服从伯努利分布,也就是说,这个特征只有两个类别。这个时候,也可以进行方差过滤,伯努利分布的方差计算公式 ...
原创博文,转载请注明出处! 包裹式特征选择法的特征选择过程与学习器相关,使用学习器的性能作为特征选择的评价准则,选择最有利于学习器性能的特征子集。常用的包裹式特征选择法有递归特征消除法RFE。 # 递归特征消除法 递归特征消除法RFE 递归特征消除法的英文全名 ...