1、pandas对缺失数据的处理 我们的数据缺失通常有两种情况: 1、一种就是空,None等,在pandas是NaN(和np.nan一样) 解决方法: 判断数据是否为NaN:pd.isnull(df),pd.notnull(df) 处理 ...
数据分析 生成器 迭代器 装饰器 两层传参 单例模式 ios七层 io多路 数据分析:是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律 pandas的拼接操作 pandas的拼接分为两种: 级联:pd.concat, pd.append 合并:pd.merge, pd.join 使用pd.concat 级联 pandas使用pd.concat函数,与np.concat ...
2019-04-22 12:38 0 1667 推荐指数:
1、pandas对缺失数据的处理 我们的数据缺失通常有两种情况: 1、一种就是空,None等,在pandas是NaN(和np.nan一样) 解决方法: 判断数据是否为NaN:pd.isnull(df),pd.notnull(df) 处理 ...
目录 删除重复元素 (duplicated) 映射 (replace) Series替换操作 DataFrame替换操作 map函数 使用聚合操作对数据异常值检测和过滤 排序 数据分类处理 (重点) 分组 ...
数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重点。 使用重构索引(reindexing),创建了一个缺少值的DataFrame。 在输出中,NaN表示 ...
pandas是基于numpy包扩展而来的,因而numpy的绝大多数方法在pandas中都能适用。 pandas中我们要熟悉两个数据结构Series 和DataFrame Series是类似于数组的对象,它有一组数据和与之相关的标签组成。 import pandas as pd ...
内容汇总目录: df插入一行 相同列名df合并 df去极值 df行、列分别求和 https://blog.csdn.net/zhili8866/article/detai ...
针对空值的处理,首先要来了解一下空值的类型: 一、pandas中的None 和 NaN 有什么区别? type(None) --类型是 NoneType 空的对象类型 type(NaN) --类型是 float 浮点型 ...