Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量。但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小。而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐 ...
Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量。但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小。而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐增加。 小文件带来的问题 关于这个问题的阐述可以读一读Cloudera的这篇文章。简单来说,HDFS的文件元信息,包括位置 大小 分 ...
2019-04-21 19:16 0 1927 推荐指数:
Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量。但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小。而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐 ...
hive小文件合并。 当使用union all会产生多个文件夹,可以设定distributed by 或者reduce个数。 hive合并。 SET hive.exec.dynamic.partition=true; SET ...
文件数目过多,会给HDFS带来压力,并且会影响处理效率,可以通过合并Map和Reduce的结果文件来消除这样的影响: set hive.merge.mapfiles = true ##在 map only 的任务结束时合并小文件 set hive ...
1.小文件产生 使用hive过程中经常会遇到小文件问题: 在执行插入数据操作过程中,可能会产生小文件(map输入); map-only作业,可能会产生小文件(map输出); map-reduce作业,每个reduce输出一个文件,可能产生小文件(reduce输出)。 2. ...
Hive小文件产生的原因 一方面hive数据仓库中汇总表的数据量通常比源数据少的多,而且为了提升运算速度,我们会增加Reduce的数量,Hive本身也会做类似的优化----Reducer数量等于源数据的量除以hive.exec.reducers.bytes.per.reduce所配置的量 ...
磁盘: heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K) 文件系统: 文件系统不是一个扇区一个扇区的来读数据,太慢了,所以有了block(块)的概念,它是一个块一个块的读取的,block才是文件 ...
一、需求背景 App端的埋点日志通过LogerServer收集到Kafka,再用Flink写入到HDFS,按天或天加小时分区,文件格式为text 或者Parquet,Checkpoint间隔为5分钟,Sink 并行度为10,每个小时产生600个小文件,由于数据量大,每天几十亿的数据,产生的小文件 ...
Hive 利用 on tez 引擎 合并小文件 标签(空格分隔): Hive 获取 partition. 开始执行 ...