论文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基于无anchor机制的特征选择模块,是一个简单高效的单阶段组件,其可以结合特征金字塔嵌入到单阶段检测器中。FSAF解决了传统基于anchor机制的两个限制:(1)启发式 ...
论文原址:https: arxiv.org abs . github:https: github.com KimSoybean ScratchDet 摘要 当前较为流行的检测算法是在经典的大规模分类的数据集上进行微调,但这样做会存在两个问题: 分类任务与检测任务二者之间对位置的敏感性差异较大,进而造成了优化目标之间存在偏差。 目标检测的结构受制于分类模型,进而造成对模型修改上的不便。 为了应对上 ...
2019-04-18 13:22 0 1298 推荐指数:
论文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基于无anchor机制的特征选择模块,是一个简单高效的单阶段组件,其可以结合特征金字塔嵌入到单阶段检测器中。FSAF解决了传统基于anchor机制的两个限制:(1)启发式 ...
论文原址:https://arxiv.org/abs/1902.05093 github:https://github.com/lingtengqiu/Deeperlab-pytorch 摘要 本文提出了一种bottoom-up,single-shot的全景图像分析 ...
论文原址:https://arxiv.org/abs/1811.07275 摘要 一个训练好的网络模型由于其模型捕捉的特征中存在大量的重叠,可以在不过多的降低其性能的条件下进行压缩剪枝。一些skip/Dense网络结构一定程度上减弱了重叠的现象,但这种做法引入了大量 ...
论文原址:https://arxiv.org/pdf/1811.05181.pdf github:https://github.com/libuyu/GHM_Detection 摘要 尽管单阶段的检测器速度较快,但在训练时存在以下几点不足,正负样本之间的巨大差距,同样 ...
论文链接:https://arxiv.org/abs/1904.08189 github:https://github.com/Duankaiwen/CenterNet 摘要 目标检测中,基于关键点的方法经常出现大量不正确的边界框,主要是由于缺乏对相关剪裁区域的额外监督 ...
论文原址:https://arxiv.org/abs/1904.01355 github: tinyurl.com/FCOSv1 摘要 本文提出了一个基于全卷积的单阶段检测网络,类似于语义分割,针对每个像素进行预测。RetinaNet,SSD,YOLOv3,Faster ...
论文原址:https://arxiv.org/abs/1904.03797 摘要 FoveaBox属于anchor-free的目标检测网络,FoveaBox直接学习可能存在的图片种可能存在的目标,这期间并不需要anchor作为参考。主要靠两方面实现:(1)产生类别敏感的语义 ...
论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基于关键点模式进行目标检测是一种新的方法,他并不需要依赖于anchor ...