转自:http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 一、Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测 ...
基于Haar特征的Adaboost级联人脸检测分类器 基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器。通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征 Adaboost 级联。理解了这三个词对该算法基本就掌握了。 算法要点 Haar分类器 Haar like特征 积分图方法 AdaBoost 级联 Haar分类器算法的要点如下: a 使用Haa ...
2019-04-16 19:21 2 1472 推荐指数:
转自:http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 一、Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测 ...
运行环境 visual studio 2017(2019也可) opencv3.4(410也可) xml文件 从OpenCV目录里找 C:\OpenCV4.0\opencv\sources\data\haarcascades 这里也有其它目标检测的xml ...
基于haar特征的Adaboost人脸检测技术 本文主要是对使用haar+Adabbost进行人脸检测的一些原理进行说明,主要是快找工作了,督促自己复习下~~ 一、AdaBoost算法原理 AdaBoost算法是一种迭代的算法,对于一组训练集,通过改变其中每个样本的分布概率,而得到 ...
[补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉. ...
人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来。 目前人脸检测的方法主要有两大类:基于知识和基于统计。 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合 ...
原帖地址:http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 由于工作需要,我开始研究人脸检测部分的算法,这期间断断续续地学习了Haar分类器的训练以及检测过程,在这里根据各种论文、网络资源的查阅以及对代码 ...
Haar分类器使用AdaBoost算法,但是把它组织为筛选式的级联分类器,每个节点是多个树构成的分类器,且每个节点的正确识别率很高。在任一级计算中,一旦获得“不在类别中”的结论,则计算终止。只有通过分类器中所有级别,才会认为物体被检测到。这样的优点是当目标出现频率较低的时候(即人脸在图像中所占比例 ...
API说明: 利用opencv自带的数据进行人脸检测: 进阶:人眼检测 级联分类器+模板匹配提高检测的稳定性,实现眼睛的追踪: 自定义级联分类器的训练和使用:待续 命令行参数: -vec ...