最近又回实验室了,开始把空闲将近半年忘记的东西慢慢找回来。先把之前这边用英文写的介绍交叉熵的文章翻译了。 背景 In classification, the most common setup is with one input, and the output is a vector ...
背景 多分类问题里 单对象单标签 ,一般问题的setup都是一个输入,然后对应的输出是一个vector,这个vector的长度等于总共类别的个数。输入进入到训练好的网络里,predicted class就是输出层里值最大的那个entry对应的标签。 交叉熵在多分类神经网络训练中用的最多的loss function 损失函数 。 举一个很简单的例子,我们有一个三分类问题,对于一个input x ,神 ...
2019-04-16 16:39 0 1372 推荐指数:
最近又回实验室了,开始把空闲将近半年忘记的东西慢慢找回来。先把之前这边用英文写的介绍交叉熵的文章翻译了。 背景 In classification, the most common setup is with one input, and the output is a vector ...
class torch.nn.CrossEntropyLoss(weight=None, size_average=True, ignore_index=-100, reduce=True) 我这里没有详细解读这个损失函数的各个参数,仅记录一下在sru中涉及到的。 sru中代 ...
https://www.cnblogs.com/marsggbo/p/10401215.html ...
学习pytorch路程之动手学深度学习-3.4-3.7 置信度、置信区间参考:https://cloud.tencent.com/developer/news/452418 本人感觉还是挺好理解的 交叉熵参考博客:https://www.cnblogs.com/kyrieng/p ...
Softmax函数与交叉熵损失函数 深度学习新手,如果错误,还请指正,谢谢 Softmax激励函数 用于生成各个结果的概率分布,其输出概率之和为1,同时取概率最高的作为结果 交叉熵损失函数(Cross Entropy Loss) softmax函数结果与真实值计算交叉熵 ...
来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中 ...
参考链接: https://www.cnblogs.com/JeasonIsCoding/p/10171201.html https://blog.csdn.net/qq_27095227/article/details/103775032 二分类的交叉熵公式是: 如果是多分类,交叉熵公式 ...
本篇借鉴了这篇文章,如果有兴趣,大家可以看看:https://blog.csdn.net/geter_CS/article/details/84857220 1、交叉熵:交叉熵主要是用来判定实际的输出与期望的输出的接近程度 2、CrossEntropyLoss()损失函数结合 ...