一、定理大概描述 给定一个网格,每个格子由边长为1的单位正方形组成。 网格内有一个多边形,并且多边形的顶点都在网格的交点处,也就是说顶点没有一个落在了单位正方形的边上或者单位正方形的内部 记多边形的面积为S,多边形内部的点的个数为I,多边形边上的点数为A 则多边形的面积 ...
H 三角形 . Description A lattice point is an ordered pair x,y where x and y are both integers. Given the coordinates of the vertices of a triangle which happen to be lattice points , you are to count th ...
2019-04-15 23:54 0 626 推荐指数:
一、定理大概描述 给定一个网格,每个格子由边长为1的单位正方形组成。 网格内有一个多边形,并且多边形的顶点都在网格的交点处,也就是说顶点没有一个落在了单位正方形的边上或者单位正方形的内部 记多边形的面积为S,多边形内部的点的个数为I,多边形边上的点数为A 则多边形的面积 ...
x≡b1 (mod m1) x≡b2 (mod m2) ...... x≡bk (mod mk) 例: x≡2 (mod 3) ① x≡3 (mod 5) ② x≡2 (mod ...
狄利克雷生成函数是数论中的一项重要工具,与 \(\text{OI}\) 也是一个不可分割的存在,能将一些数论式子推向本质,且能很好地构造筛法。 注:以下讨论若无特殊说明 \(p\) 代表一个质数,\(\text{Prime}\) 代表全体质数集。 \(1.\) 狄利克雷生成函数初步 ...
摘要 本文主要讲述了算术基本定理的内容,具体的应用形式,重点结合例题展示如何使用算术基本定理求解问题。 算术基本定理 算术基本定理可表述为:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积N=P1a1P2a2P3a3......Pnan ...
定理:对于给定的正整数a,b,方程有解的充要条件为c是gcd(a,b)的整数倍 证明: 充分性证明: 设gcd(a,b)=d,于是设,其中k1,k2互质 那么原等式等价于,即,其中k1,k2互质 那么这个方程等价于模线性方程,由拓展gcd知,该方程一定有解 那么该方程的一组解即为原方程 ...
在1979年Lee发表的论文《Lee Filter Digital Image Enhancement and Noise Filtering by Use of Local Stati ...
采样定理在音乐上的应用 人可以听到20~20000Hz的声音,上限为20000Hz,即$\frac{p}{2} = 20000$,$p=40000$。那么采样率至少要为40000。CD的采样率采用44100(44.1kHz),据传,在采集模拟信号时采用44100,是因为这些采集的机器 ...
摘要 本文主要介绍了数论中的欧拉定理,进而介绍欧拉定理的拓展及应用,结合例题展示如何使用拓展欧拉定理实现降幂取模。 在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质定理。了解欧拉定理之前先来看一下费马小定理: a是不能被质数p整除的正整数 ...