在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视角得到的点集合并到统一的坐标系下形成一个完整的点云,然后就可以方便进行可视化的操作,这就是点云数据 ...
三维配准中经常被提及的配准算法是ICP迭代的方法,这种方法一般般需要提供一个较好的初值,也就是需要粗配准,同时由于算法本身缺陷,最终迭代结果可能会陷入局部最优,导致配准失败,往往达不到我们想要的效果。本文介绍的是另一种比较好的配准算法,NDT配准。所谓NDT就是正态分布变换,作用与ICP一样用来估计两个点云之间的刚体变换。用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点 ...
2019-04-14 15:29 0 1683 推荐指数:
在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视角得到的点集合并到统一的坐标系下形成一个完整的点云,然后就可以方便进行可视化的操作,这就是点云数据 ...
导师给了方向,所以最近在看点云配准相关论文“ 点云配准是计算机视觉的一个分支方向: 一、点云配准基础知识 1.入门知识及背景 1)点云概念 点云是在同一空间参考系下表达目标空间分布和目标表面特性的海量点集合,在获取物体表面每个采样点的空间坐标后,得到的是点的集合,称之为“点云 ...
(1)正态分布变换进行配准(normal Distributions Transform) 介绍关于如何使用正态分布算法来确定两个大型点云之间的刚体变换,正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优匹配,因为其在配准的过程中不利用对应点的特征 ...
(1)关于点云的配准 1.首先给定源点云与目标点云。 2.提取特征确定对应点 3.估计匹配点对应的变换矩阵 4.应用变换矩阵到源点云到目标点云的变换 配准的流程图 通过特征点的匹配步骤 (1)计算源点 ...
(把自己知乎上的回答搬运了过来作为日志)1、首先,点云配准过程,就是求一个两个点云之间的旋转平移矩阵(rigid transform or euclidean transform 刚性变换或欧式变换),将源点云(source cloud)变换到目标点云(target cloud)相同的坐标系下 ...
自己理解 为了得到被测物体的完整数据模型,需要确定一个合适的坐标变换,将从各个视角得到的点集合并到一个统一的坐标系下,形成一个完整的数据点云,然后就可以方便地进行可视化等操作,这便是点云数据的配准. 方法: 主要是通过一定的算法或者统计学规律,利用计算机计算两块点云之间的错位 ...
ICP算法简介 根据点云数据所包含的空间信息,可以直接利用点云数据进行配准。主流算法为最近迭代算法(ICP,Iterative Closest Point),该算法是根据点云数据首先构造局部几何特征,然后再根据局部几何特征进行点云数据重定位。 一、 ICP原理 ...
MeshLab是一个开源、可移植和可扩展的三维几何处理系统,主要用于交互处理和非结构化编辑三维三角形网格。它支持多种文件格式: import:PLY, STL, OFF, OBJ, 3DS ...