原文:对训练集、验证集和测试集的一点理解

以神经网络为例 数据量较小 w条以下 ,一般的划分是,训练集:验证集:测试集 : : 有的地方说是 : : ,训练集:测试集 : : 总之测试集不要超过 训练集:训练参数,此处的参数是指普通参数,即在神经网络中能够被梯度下降算法所更新的,如权值 验证集:用于调超参数,监控模型是否发生过拟合,能够被多次使用,进行人工调参。此处的超参数,如神经网络中的网络层数 网络节点数 迭代次数 学习率 测试集: ...

2019-04-12 20:39 1 1829 推荐指数:

查看详情

训练验证测试以及交验验证理解

在人工智能机器学习中,很容易将“验证”与“测试”,“交叉验证”混淆。 一、三者的区别 训练(train set) —— 用于模型拟合的数据样本。 验证(development set)—— 是模型训练过程中单独留出的样本集,它可以用于调整模型的超参数和用于对模型的能力进行 ...

Mon Oct 12 06:51:00 CST 2020 0 558
关于训练,验证,测试的划分

首先需要说明的是:训练(training set)、验证(validation set)和测试(test set)本质上并无区别,都是把一个数据分成三个部分而已,都是(feature, label)造型。尤其是训练验证,更无本质区别。测试可能会有一些区别,比如在一些权威计算机视觉 ...

Thu Jul 19 01:39:00 CST 2018 0 11208
验证测试训练

这三个名词在机器学习领域的文章中极其常见,但很多人对他们的概念并不是特别清楚,尤其是后两个经常被人混用。 Ripley, B.D(1996)在他的经典专著P ...

Mon Jul 29 01:21:00 CST 2013 0 5271
训练验证测试比例

当数据量比较小时,可以使用 7 :3 训练数据和测试数据,或者 6:2 : 2 训练数据,验证数据和测试数据。 (西瓜书中描述常见的做法是将大约 2/3 ~ 4/5 的样本数据用于训练,剩余样本用于测试) 当数据量非常大时,可以使用 98 : 1 : 1 训练数据,验证数据和测试 ...

Mon Jul 01 19:23:00 CST 2019 0 6078
训练验证测试区别

我们在进行模型评估和选择的时候,先将数据随机分为训练验证测试,然后用训练训练模型,用验证验证模型,根据情况不断调整模型,选择其中最好的模型,再用训练测试训练模型得到一个最好的模型,最后用测试评估最终的模型。 训练 训练是用于模型拟合数据样本。 验证 ...

Thu Mar 03 04:33:00 CST 2022 0 1643
关于训练,验证,测试的划分

首先需要说明的是:训练(training set)、验证(validation set)和测试(test set)本质上并无区别,都是把一个数据分成三个部分而已,都是(feature, label)造型。尤其是训练验证,更无本质区别。测试可能会有一些区别,比如在一些权威计算机视觉 ...

Sat Oct 12 19:46:00 CST 2019 0 325
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM