可以参数2017coco detection 旷视冠军MegDet: MegDet 与 Synchronized BatchNorm PyTorch-Encoding官方文档对CGBN(cross gpu bn)实现 GPU捉襟见肘还想训练大批量模型 ...
最近在了解GPU架构这方面的内容,由于资料零零散散,所以准备写两篇博客整理一下。GPU的架构复杂无比,这两篇文章也是从宏观的层面去一窥GPU的工作原理罢了 GPU根据厂商的不同,显卡型号的不同,GPU的架构也有差别,但是大体的设计基本相同,原理的部分也是相通的。下面我们就以NVIDIA的Fermi架构为蓝本,从降低延迟的角度,来讲解一下GPU到底是如何利用数据的并行处理来提升性能的。有关GPU的架 ...
2019-04-12 14:34 0 2110 推荐指数:
可以参数2017coco detection 旷视冠军MegDet: MegDet 与 Synchronized BatchNorm PyTorch-Encoding官方文档对CGBN(cross gpu bn)实现 GPU捉襟见肘还想训练大批量模型 ...
来源:https://blog.csdn.net/weixin_42001089/article/details/88843152 ...
1、 什么是MPP?MPP (Massively Parallel Processing),即大规模并行处理,在数据库非共享集群中,每个节点都有独立的磁盘存储系统和内存系统,业务数据根据数据库模型和应用特点划分到各个节点上,每台数据节点通过专用网络或者商业通用网络互相连接,彼此协同计算,作为整体 ...
面试官:说下你知道的MPP架构的计算引擎? 这个问题不少小伙伴在面试时都遇到过,因为对MPP这个概念了解较少,不少人都卡壳了,但是我们常用的大数据计算引擎有很多都是MPP架构的,像我们熟悉的Impala、ClickHouse、Druid、Doris等都是MPP架构。 采用MPP架构 ...
使用 joblib 对 Pandas 数据进行并行处理 如果需要对一个很大的数据集进行操作,而基于一列数据生成新的一列数据可能都需要耗费很长时间。 于是可以使用 joblib 进行并行处理。 假设我们有一个 dataframe 变量 data,要基于它的 source 列生成新的一列 ...
可选择:数据并行处理(文末有完整代码下载) 作者:Sung Kim 和 Jenny Kang 在这个教程中,我们将学习如何用 DataParallel 来使用多 GPU。 通过 PyTorch 使用多个 GPU 非常简单。你可以将模型放在一个 GPU: device ...
本随笔主要讲述在shell编程中实现任务并发处理。 参考自:https://www.cnblogs.com/pmars/archive/2012/11/15/2771609.html 一、调度脚本 #!/bin/sh help() { echo "使用说明 ...
1、 什么是MPP? MPP (Massively Parallel Processing),即大规模并行处理,在数据库非共享集群中,每个节点都有独立的磁盘存储系统和内存系统,业务数据根据数据库模型和应用特点划分到各个节点上,每台数据节点通过专用网络或者商业通用网络互相连接,彼此协同计算 ...