聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为、兴趣等来构建推荐系统。 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性),使用聚类算法将数据集划分为k个子集,并且要求每个子集内部的元素之间的差异度尽可能低,而不同子集 ...
一.简介 KMeans 算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 二.步骤 .为待聚类的点寻找聚类中心。 .计算每个点到聚类中心的距离,将每个点聚类到该点最近的聚类中。 .计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心。 .反复执行步骤 , ,直 ...
2019-04-11 17:40 0 815 推荐指数:
聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为、兴趣等来构建推荐系统。 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性),使用聚类算法将数据集划分为k个子集,并且要求每个子集内部的元素之间的差异度尽可能低,而不同子集 ...
1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib、MLI、ML Optimizer。 ML Optimizer: This layer aims to automating the task of ML pipeline ...
import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.mllib.clustering.{KMeans, KMeansModel} import ...
写在前面的话:由于spark2.0.0之后ML中才包括LDA,GaussianMixture 模型,这里k-means用的是ML模块做测试,LDA,GaussianMixture 则用的是MLlib模块 数据资料下载网站,大力推荐!!! http ...
最近在网上查看用MapReduce实现的Kmeans算法,例子是不错,http://blog.csdn.net/jshayzf/article/details/22739063 但注释太少了,而且参数太多,如果新手学习的话不太好理解。所以自己按照个人的理解写了一个简单的例子并添加了详细的注释 ...
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出 ...
一、聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。 聚类(Cluster)分析是由若干模式(Pattern)组成的,通常,模式是一个度量(Measurement)的向量,或者是 多维空间中的一个点。 聚类分析以相似性 ...
KNN K-Means 目的是为了确定一个点的分类 目的是为了将一系列点集分成k类 KNN是分类算法 K-Means是聚类算法 监督学习,分类目标事先 ...