1、介绍 语义分割通常有两个问题:类内不一致性(同一物体分成两类)和类间不确定性(不同物体分成同一类)。本文从宏观角度,认为语义分割不是标记像素而是标记一个整体,提出了两个结构解决这两个问题,平滑网络和边界网络(Smooth Network and Border Network)。平滑网络 ...
Dual Attention Network for Scene Segmentation 在本文中,我们通过基于自我约束机制捕获丰富的上下文依赖关系来解决场景分割任务。 与之前通过多尺度特征融合捕获上下文的工作不同,我们提出了一种双重注意网络 DANet 来自适应地集成局部特征及其全局依赖性。 具体来说,我们在传统的扩张FCN之上附加两种类型的注意力模块,它们分别对空间和通道维度中的语义相互依赖 ...
2019-04-10 20:23 1 2780 推荐指数:
1、介绍 语义分割通常有两个问题:类内不一致性(同一物体分成两类)和类间不确定性(不同物体分成同一类)。本文从宏观角度,认为语义分割不是标记像素而是标记一个整体,提出了两个结构解决这两个问题,平滑网络和边界网络(Smooth Network and Border Network)。平滑网络 ...
一、定义 语义图像分割的目标是标记图像每个像素的类别。因为我们需要预测图像中的每个像素,所以此任务通常被称为密集预测。 二、参考资料 论文:U-Net: Convolutional Networks for Biomedical Image Segmentation 三、网络结构 ...
语义分割和实例分割概念 语义分割:对图像中的每个像素都划分出对应的类别,实现像素级别的分类。 实例分割:目标是进行像素级别的分类,而且在具体类别的基础上区别不同的实例。 语义分割(Semantic Segmentation) 输入:一张原始的RGB图像 输出:带有各像素类别标签 ...
语义分割是将标签分配给图像中的每个像素的过程。这与分类形成鲜明对比,其中单个标签被分配给整个图片。语义分段将同一类的多个对象视为单个实体。另一方面,实例分段将同一类的多个对象视为不同的单个对象(或实例)。通常,实例分割比语义分割更难。 语义和实例分割之间的比较 ...
前言: 本文介绍了一个用于语义分割领域的attention模块scSE。scSE模块与之前介绍的BAM模块很类似,不过在这里scSE模块只在语义分割中进行应用和测试,对语义分割准确率带来的提升比较大。 提出scSE模块论文的全称是:《Concurrent Spatial ...
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation 摘要 无监督 ...
CVPR2021 原文 半监督语义分割方法的总结: 主要思想: Consistency regularization :希望不同扰动之下网络的输出结果一致,扰动的加入的位置:(1)在输入图片上加扰动(2)在某一层的输出特征上添加扰动 创新点: 鼓励两个初始化不同(不同扰动)的网络 ...
标准语义分割是指为每个像素分类,得到它的所属类;使用标准的PASCAL VOC IoU(intersection-over-union)得分来评估预测结果与真实场景之间的匹配准确度, 算法能够对图像中的每一个像素点进行准确的类别预测. 实例分割,是语义分割的子类型,同时对每个目标进行定位和语义 ...