MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌、混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好。MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据。 为什么MapReduce计算模型需要 ...
Shuffle简介 Shuffle的本意是洗牌 混洗的意思,把一组有规则的数据尽量打乱成无规则的数据。而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则 打乱 成具有一定规则的数据,以便reduce端接收处理。其在MapReduce中所处的工作阶段是map输出后到reduce接收前,具体可以分为map端和reduce端前后两个部分。 在shuffl ...
2019-05-10 15:34 0 2270 推荐指数:
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌、混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好。MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据。 为什么MapReduce计算模型需要 ...
引言: 虽然MapReduce计算框架简化了分布式程序设计,将所有并行程序需要关注的设计细节抽象成公共模块并交由系统实现,用户只需关注自己的应用程序的逻辑实现,提高了开发效率。但开发者如果对Mapreduce计算框架如何实现这样的魔术没有一个基本的了解,那么将无法利用框架本身提供的灵活性 ...
源文件放在github,随着理解的深入,不断更新,如有谬误之处,欢迎指正。原文链接https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/sort-shuffle.md 正如你所知,spark实现了多种shuffle方法 ...
在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。Spark作为MapReduce框架的一种实现,自然也实现了shuffle的逻辑 ...
1、spark shuffle:spark 的 shuffle 主要发生在 DAG 视图中的 stage 和 stage 之间,也就是RDD之间是宽依赖的时候,会发生 shuffle。 补充:spark shuffle在很多地方也会参照mapreduce一样,将它分成两个阶段map阶段 ...
介绍 不论MapReduce还是RDD,shuffle都是非常重要的一环,也是影响整个程序执行效率的主要环节,但是在这两个编程模型里面shuffle却有很大的异同。 shuffle的目的是对数据进行混洗,将各个节点的同一类数据汇集到某一个节点进行计算,为了就是分布式计算 ...
https://blog.csdn.net/u014374284/article/details/49205885 https://blog.csdn.net/asn_forever/article ...
错误信息 reduce容器报的错误信息如下: 其他日志信息 从信息可以看出来,错误的原因是由于reduce从map拷贝数据的过程当中失败的,并且还是在merge阶段. 解决办法: 修 ...