SVM之问题形式化 SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 >>>写在SVM之前——凸优化与对偶问题 本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到。考虑到SVM之复杂,将其中优化方面基础知识提出,单作此篇 ...
优化问题的基本形式 最大值问题可转化为最小值问题 优化问题的域 可行域:所有可行点的集合 最优化值: 最优化解: 凸优化问题的基本形式 其中,约束函数f x 是凸函数,h x 为仿射函数 仿射函数:即最高次数为 的多项式函数。常数项为零的仿射函数称为线性函数。 凸优化问题的重要性质: .凸优化问题的可行域为凸集 .凸优化问题的局部最优解即为全局最优解 对偶问题 一般优化问题的拉格朗日乘子法 拉格朗 ...
2019-03-30 18:28 0 2652 推荐指数:
SVM之问题形式化 SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 >>>写在SVM之前——凸优化与对偶问题 本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到。考虑到SVM之复杂,将其中优化方面基础知识提出,单作此篇 ...
目录 1. 凸集 2. 仿射集 3.凸函数 4.凸优化问题 最近学习了一些凸优化的知识,想写几篇随笔作为总结备忘。在此篇中我们简要地介绍一点点基本概念。 1. 凸集 **定义1. 集合$S\in\mathbb{R}^{n ...
SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件还有复杂的SMO算法! 相信有很多研究过SVM的小伙伴们为了弄懂它们也是查阅了各种资料,着实费了 ...
典型的凸优化问题 什么样的问题是一个凸优化问题呢? \[\begin{aligned} & min \quad f_0(x) \\ & s.t. \quad f_i(x) \leq 0 \qquad i=1,...,m \\ & \qquad \ a_i^Tx ...
一、无约束优化 对于无约束的优化问题,直接令梯度等于0求解。 如果一个函数$f$是凸函数,那么可以直接通过$f(x)$的梯度等于0来求得全局极小值点。 二、有约束优化 若$f(x),h(x),g(x)$三个函数都是线性函数,则该优化问题称为线性规划。若任意 ...
1. 概述 \(\quad\)之前介绍了凸集相关的定义与部分性质,其实不是特别完全,因为单单的几篇博客是无法把凸集这一块完全讲全的,所以凸集变换这里也只讲几个稍微重要的变换。来捋一下学习的脉络吧,凸问题由求解变量、约束与目标函数组成,其中变量的可行域必须是凸集。所以下面要介绍的就是涉及到约束 ...
凸集 集合C内任意两点间的线段也均在集合C内,则称集合C为凸集。 \(\forall x_1, x_2 \in C, \forall \theta \in [0,1], 则 x= \theta * x_1 + (1-\theta)*x_2 \in C ...
凸集、凸函数、凸优化和凸二次规划 一、总结 一句话总结: 凸集:集合C内任意两点间的线段均包含在集合C形成的区域内,则称集合C为凸集 二、凸集、凸函数、凸优化和凸二次规划 转自或参考:凸集、凸函数、凸优化和凸二次规划https://blog.csdn.net ...