线性回归:w1x1+w2x2+w3x3+......+wnxn+bias(这是一个偏移量),我们采用的算法是:线性回归,策略是:均方误差,优化是:梯度下降API, 1.转准备好实验的数据:100个数据,每一个有一个特征值,所以形成一个【100,1】的列表,在准备一个目标函数:y=0.8x+0.7 ...
目录 准备知识 Tensorflow运算API 梯度下降API 简单的线性回归的实现 建立事件文件 变量作用域 增加变量显示 模型的保存与加载 自定义命令行参数 准备知识 Tensorflow运算API 矩阵运算:tf.matmul x, w 平方:tf.square error 均值:tf.reduce mean error 梯度下降API tf.train.GradientDescentOp ...
2019-03-30 11:42 0 539 推荐指数:
线性回归:w1x1+w2x2+w3x3+......+wnxn+bias(这是一个偏移量),我们采用的算法是:线性回归,策略是:均方误差,优化是:梯度下降API, 1.转准备好实验的数据:100个数据,每一个有一个特征值,所以形成一个【100,1】的列表,在准备一个目标函数:y=0.8x+0.7 ...
1、生成高斯分布的随机数 导入numpy模块,通过numpy模块内的方法生成一组在方程 周围小幅波动的随机坐标。代码如下: 运行上述代码,输出图形如下: 2、采用TensorFlow来获取上述方程的系数 首先搭建基本的预估模型y = w ...
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项。线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算。 使用 ...
运行结果: ...
结果: ...
首先我们要试验的是 人体脂肪fat和年龄age以及体重weight之间的关系,我们的目标就是得到一个最优化的平面来表示三者之间的关系: TensorFlow的程序如下: 程序中的数据散点图如下: 通过TensorFlow得到的最终的W的取值和b的取值如下所示: 现在 ...