nn.Module() 目录 nn.Module() nn.Module() 1、核心 2、查看 3、设置 4、注册 5、转换 6、加载 如何将模型 ...
torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己定义的网络,需要注意以下几点: 需要继承nn.Module类,并实现forward方法,只要在nn.Module的子类中定义forward方法,backward函数就会被自动实现 利用autogra ...
2019-03-29 15:59 0 1969 推荐指数:
nn.Module() 目录 nn.Module() nn.Module() 1、核心 2、查看 3、设置 4、注册 5、转换 6、加载 如何将模型 ...
pytorch——nn.Module 构建深度学习模型的话,用autograd太抽象、底层、代码量大实现麻烦,提供了nn.Module比较方便。nn.Module代表某一次或者某几层的nn。一般是基础nn.Module,写自己的nn/nn的某层 一、Module基本知识介绍 ...
大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Parameter nn.functional中的函数更像是纯函数,由def function ...
参考文档Module — PyTorch 1.7.0 documentation net类及其子类都会调用 init_weights() 方法 ...
参考:pytorch教程之nn.Module类详解——使用Module类来自定义模型 pytorch中对于一般的序列模型,直接使用torch.nn.Sequential类及可以实现,这点类似于keras,但是更多的时候面对复杂的模型,比如:多输入多输出、多分支模型、跨层连接模型、带有自定义层 ...
初始化,这些内容都在nn.Module中有实现。 网络模型的创建步骤 创建模型有 2 个要 ...
『TensorFlow』网络操作API_上 『TensorFlow』网络操作API_中 『TensorFlow』网络操作API_下 之前也说过,tf 和 t 的层本质区别就是 tf 的是层函数,调用即可,t 的是类,需要初始化后再调用实例(实例都是callable的) 卷积 ...
有下面代码可以看出torch层函数(nn.Module)用法,使用超参数实例化层函数类(常位于网络class的__init__中),而网络class实际上就是一个高级的递归的nn.Module的class。 通常 torch.nn的核心数据结构是Module,它是一个抽象概念,既可以表示 ...