的梯度方向,接着乘以一个步长,得到的“扰动”加在原来的输入 上就得到了在FGSM攻击下的样本。 ...
FGSM原论文地址:https: arxiv.org abs . .FGSM的原理 FGSM的全称是Fast Gradient Sign Method 快速梯度下降法 ,在白盒环境下,通过求出模型对输入的导数,然后用符号函数得到其具体的梯度方向,接着乘以一个步长,得到的 扰动 加在原来的输入 上就得到了在FGSM攻击下的样本。 FGSM的攻击表达如下: 那么为什么这样做有攻击效果呢 就结果而言, ...
2019-03-28 16:31 3 9741 推荐指数:
的梯度方向,接着乘以一个步长,得到的“扰动”加在原来的输入 上就得到了在FGSM攻击下的样本。 ...
引言 在深度学习领域内的对抗样本综述(二)中,我们知道了几种著名的对抗攻击和对抗防御的方法。下面具体来看下几种对抗攻击是如何工作的。这篇文章介绍FGSM(Fast Gradient Sign Method)。 预备知识 符号函数sign 泰勒展开 当函数\(f(x)\)在点\(x_0 ...
MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf 1.MIM攻击的原理 MIM攻击全称是 Momentum Iterative Method,其实这也是一种类似于PGD的基于梯度的迭代攻击算法。它的本质就是,在进行迭代的时候,每一轮的扰动 ...
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可以看作是FGSM的翻版——K-FGSM (K表示迭代的次数),大概的思路就是,FGSM ...
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可以看作是FGSM的翻版——K-FGSM (K表示迭代的次数),大概的思路就是,FGSM ...
上篇: https://blog.csdn.net/qq_38556984/article/details/105616211 下篇:https://blog.csdn.net/qq_3855698 ...
链式法则 单变量函数的链式法则 多变量函数的链式法则 梯度下降法的基 ...
一、现象介绍 靠近输出层的hidden layer 梯度大,参数更新快,所以很快就会收敛; 而靠近输入层的hidden layer 梯度小,参数更新慢,几乎就和初始状态一样,随机分布。 这种现象就是梯度弥散(vanishing gradient problem)。 而在另一种情况中,前面 ...