1、得分函数 线性分类器:在坐标系上就是一直线,大于它就是1,小于它就是0。 一张图假设是32*32*3的像素矩阵,首先把它平展为3072*1的向量,如果最后结果只能是10个类 ...
我开始写这篇博客其实是深受实验室师兄的影响,他在找工作中,在一面 二面的过程中被问到了很多NLP的基础知识,平时对于这些知识我也是云里雾里,搞不太清楚。今天就先针对这个知识点查了很多资料,以及读了很多知乎上 CSDN博客上一些分享,我在此结合起来,更加细致的说一下自己的理解。希望大家都能了解一些,现在就拓展知识面,准备起来吧 希望在自己在面试之前,能够踏实一些... 什么是泛化能力 通俗的说就是 ...
2019-03-26 20:11 0 1092 推荐指数:
1、得分函数 线性分类器:在坐标系上就是一直线,大于它就是1,小于它就是0。 一张图假设是32*32*3的像素矩阵,首先把它平展为3072*1的向量,如果最后结果只能是10个类 ...
1. 从多项式曲线拟合中的过拟合问题说起 我们以一个简单的回归问题开始,说明许多关键的概念。 假设我们观察到一个实值输入变量x,我们想使用这个观察来预测实值目标变量t的值。 对于这个目的,一个很好的方法是考虑一个使用已知的产生方式人工制造出的例子 ...
在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外 ...
,及如何改进系统复杂度,使其能够使其在准确拟合现有训练样例的情况下,尽可能准确预测新数据。 U ...
这是专栏《AI初识境》的第9篇文章。所谓初识,就是对相关技术有基本了解,掌握了基本的使用方法。 今天来说说深度学习中的generalization问题,也就是泛化和正则化有关的内容。 作者&编辑 | 言有三 1 什么是generalization 机器学习方法训练出来一个模型,希望 ...
在进行模型搭建时常用的解决过拟合的方法有以下几种: · 采用更多的数据 · 迫使模型的复杂度降低(减少层数、正则化) · dropout(提高鲁棒性) · 提早结束训练过程 · 数据增强 这里重点讲正则化(regularization) 假定对于一个二分类问题 ...
线性回归例子 如果 \[{h_\theta }\left( x \right) = {\theta _0} + {\theta _1}x\] 通过线性回归得到的曲线可能如下图 这种情况下,曲线对数据的拟合程度不好。这种情况称为“Underfit”,这种情况属于“High bias”(高 ...
0范数:向量中非零元素的个数。 1范数:为绝对值之和。1范数和0范数可以实现稀疏,1因具有比L0更好的优化求解特性而被广泛应用。 2范数:就是通常意义上的模,L2范数是指向量各元素的平方和然后求平方根。我们让L2范数的正则项||W||2最小,可以使得W的每个元素都很小,都接近于 ...