博客园的markdown用起来太心塞了,现在重新用其他编辑器把这篇博客整理了一下。 目前用word2vec算法训练词向量的工具主要有两种:gensim 和 tensorflow。gensim中已经封装好了word2vec这个包,用起来很方便,只要把文本处理成规范的输入格式,寥寥几行代码就能训练词 ...
Word vec是Google的Mikolov等人提出来的一种文本分布式表示的方法,这种方法是对神经网络语言模型的 瘦身 ,巧妙地运用层次softmax hierarchical softmax 和负采样 Negative sampling 两种技巧,使得原本参数繁多 计算量巨大的神经网络语言模型变得容易计算。 Word vec概括地说是包含了两种模型和两种加速训练方法: 一 两种模型:CBOW ...
2019-03-25 13:15 0 1478 推荐指数:
博客园的markdown用起来太心塞了,现在重新用其他编辑器把这篇博客整理了一下。 目前用word2vec算法训练词向量的工具主要有两种:gensim 和 tensorflow。gensim中已经封装好了word2vec这个包,用起来很方便,只要把文本处理成规范的输入格式,寥寥几行代码就能训练词 ...
今天参考网上的博客,用gensim训练了word2vec词向量。训练的语料是著名科幻小说《三体》,这部小说我一直没有看,所以这次拿来折腾一下。 《三体》这本小说里有不少人名和一些特殊名词,我从网上搜了一些,作为字典,加入到jieba里,以提高分词的准确性。 一、gensim中 ...
目录 大纲概述 数据集合 数据处理 预训练word2vec模型 一、大纲概述 文本分类这个系列将会有8篇左右文章,从github直接下载代码,从百度云下载训练数据,在pycharm上导入即可使用,包括基于word2vec预训练的文本分类,与及基于近几年的预训练模型 ...
简介 Word2vec 是 Google 在 2013 年年中开源的一款将词表征为实数值向量的高效工具, 其利用深度学习的思想,可以通过训练,把对文本内容的处理简化为 K 维向量空间中的向量运算,而向量空间上的相似度可以用来表示文本语义上的相似度。Word2vec输出的词向量可以被用来做 ...
DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇、序 一、DeepNLP的核心关键:语言表示(Representation) 二、NLP词的表示方法类型 1、词的独热表示one-hot representation ...
在NLP(自然语言处理)领域,文本表示是第一步,也是很重要的一步,通俗来说就是把人类的语言符号转化为机器能够进行计算的数字,因为普通的文本语言机器是看不懂的,必须通过转化来表征对应文本。早期是基于规则的方法进行转化,而现代的方法是基于统计机器学习的方法。 数据决定了机器学习的上限,而算法只是尽可 ...
上一篇博客用词袋模型,包括词频矩阵、Tf-Idf矩阵、LSA和n-gram构造文本特征,做了Kaggle上的电影评论情感分类题。 这篇博客还是关于文本特征工程的,用词嵌入的方法来构造文本特征,也就是用word2vec、glove和fasttext词向量进行文本表示,训练随机森林 ...