1. KL散度 KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布 $P$ 和 $Q$ 之间差别的非对称性的度量。 KL散度是用来 度量使用基于 $Q$ 的编码来编码来自 $P$ 的样本平均所需的额外的位元数。 典型情况下,$P$ 表示数据的真实分布,$Q$ 表示 ...
MMD:最大均值差异 Wasserstein距离 实验 数据来源 Amazon review benchmark dataset.The Amazon review dataset is one of the most widely used benchmarks for domain adaptation and sentiment analysis. It is collected from ...
2019-03-22 21:26 0 1533 推荐指数:
1. KL散度 KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布 $P$ 和 $Q$ 之间差别的非对称性的度量。 KL散度是用来 度量使用基于 $Q$ 的编码来编码来自 $P$ 的样本平均所需的额外的位元数。 典型情况下,$P$ 表示数据的真实分布,$Q$ 表示 ...
信息熵、交叉熵、KL散度、JS散度、Wasserstein距离 交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵 ...
目录 香农信息量、信息熵、交叉熵 KL散度(Kullback–Leibler divergence) JS散度(Jensen-Shannon divergence ) Wasserstein距离 几种距离对比 GAN相关应用 一、香农信息量、信息熵、交叉熵 香农 ...
在深度学习中,我们通常对模型进行抽样并计算与真实样本之间的损失,来估计模型分布与真实分布之间的差异。并且损失可以定义得很简单,比如二范数即可。但是对于已知参数的两个确定分布之间的差异,我们就要通过推导的方式来计算了。 下面对已知均值与协方差矩阵的两个多维高斯分布之间的KL散度进行推导 ...
两个性质: (1)不对称性 不对称性尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者 ...
度量两个分布之间的差异 (一)K-L 散度 K-L 散度在信息系统中称为相对熵,可以用来量化两种概率分布 P 和 Q 之间的差异,它是非对称性的度量。在概率学和统计学上,我们经常会使用一种更简单的、近似的分布来替代观察数据或太复杂的分布。K-L散度能帮助我们度量使用一个分布来近似另一 ...
一、第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain)。 KL散度是两个概率分布P和Q差别 ...
原文地址Count Bayesie 这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释得非常清晰易懂,建议阅读 KL散度( KL divergence ...