Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术。在keras发布的经典模型中,可以看到不少模型甚至抛弃了全连接层,转而使用GAP,而在支持迁移学习方面,各个模型几乎都支持使用Global ...
参考 . https: blog.csdn.net weixin article details 完 ...
2019-03-20 10:14 0 700 推荐指数:
Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术。在keras发布的经典模型中,可以看到不少模型甚至抛弃了全连接层,转而使用GAP,而在支持迁移学习方面,各个模型几乎都支持使用Global ...
有部分内容是转载的知乎的,如有侵权,请告知,删除便是,但由于是总结的,所以不一一列出原作者是who。 再次感谢,也希望给其他小白受益。 首先说明:可以不用全连接层的。 理解1: 卷积取的是局部特征,全连接就是把以前的局部特征重新通过权值矩阵组装成完整的图。 因为用到了所有的局部特征 ...
深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activation='linear', weights=None ...
理解为什么要将全连接层转化为卷积层 1.全连接层可以视作一种特殊的卷积 考虑下面两种情况: 特征图和全连接层相连,AlexNet经过五次池化后得到7*7*512的特征图,下一层全连接连向4096个神经元,这个过程可以看做有4096个7*7*512的卷积核和7*7*512的特征图进行卷积 ...
CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样本的标记空间的作用。 一段来自知乎的通俗理解: 从卷积网络谈起,卷积网络 ...
深度学习最终目的表现为解决分类或回归问题。在现实应用中,输出层我们大多采用softmax或sigmoid函数来输出分类概率值,其中二元分类可以应用sigmoid函数。 而在多元分类的问题中,我们默认采用softmax函数,具体表现为将多个神经元的输出,映射到0 ~ 1的区间中,按概率 ...
1. 全连接层 经过前面若干次卷积+激励+池化后,终于来到了输出层,模型会将学到的一个高质量的特征图片全连接层。其实在全连接层之前,如果神经元数目过大,学习能力强,有可能出现过拟合。因此,可以引入dropout操作,来随机删除神经网络中的部分 ...
...