原文:lambda正则化参数的大小影响

当lambda的值很小时,其惩罚项值不大,还是会出现过拟合现象,当时lambda的值逐渐调大的时候,过拟合现象的程度越来越低,但是当labmda的值超过一个阈值时,就会出现欠拟合现象,因为其惩罚项太大,导致丢失太多的特征,甚至一些比较重要的特征。 ...

2019-03-30 09:40 0 900 推荐指数:

查看详情

正则化--Lambda

模型开发者通过以下方式来调整正则化项的整体影响:用正则化项的值乘以名为 lambda(又称为正则化率)的标量。也就是说,模型开发者会执行以下运算: $$\text{minimize(Loss(Data|Model)} + \lambda \text{ complexity ...

Sun Mar 25 18:15:00 CST 2018 0 1029
参数正则化

参数:在机器学习中,超参数是在开始学习过程之前定义的参数,而不是通过训练得到的参数; 过拟合:神经网络模型在训练数据集上的准确率较高,但此模型在新的数据进行预测或分类时准确率较低,则说明这个模型的泛化能力差。 正则化:在损失函数中给每个参数 w 加上权重,引入模型复杂度指标,从而抑制模型 ...

Mon Jun 03 18:11:00 CST 2019 0 482
对于正则化的理解

本文主要包含以下内容: 一、什么是正则化 二、参数范数模型 2.1 L1正则和L2正则 2.2 为什么通过L1正则、L2正则能够防止过拟合 2.3 L2正则的表现 2.4 L1正则化为什么会产生稀疏解 2.5 L2正则为什么求解比较稳定 三、Dropout和集成方法 3.1 ...

Sun Jul 15 03:22:00 CST 2018 0 13897
7、 正则化(Regularization)

,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改 ...

Sun Oct 13 01:14:00 CST 2019 0 1013
TensorFlow(三)---------正则化

~~~~~~~ 正则化的基本思想是向损失函数添加一个惩罚项用于惩罚大的权重,隐式的减少自由参数的数量。 ...

Mon Nov 13 04:58:00 CST 2017 0 1339
正则化详解

一、为什么要正则化   学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差。正则化(regularization)技术,可以改善或者减少过度拟合问题,进而增强泛化能力 ...

Sun Jan 10 21:57:00 CST 2021 0 864
正则化系数

正则化 --在原有损失函数的基础上加上一个正则化项 通常用到的有均方根误差rmse和平均绝对误差mae 通过限制参数过多或者过大,避免模型更加复杂,简单来说就是降低模型的泛化错误率,避免模型过拟合 L1与L2的区别 L1可以实现让参数矩阵稀疏, 且L1正则化的损失函数不不是连续可导 ...

Sat Mar 21 00:33:00 CST 2020 0 2090
正则化(Regularization)

我们在使用线性回归和逻辑斯特回归的时候,高次幂的多项式项可能造成过拟合的问题。而我们使用过拟合这一方法来改善或者减少这一问题。 我们所要做的就是使θ尽可能接近0,那么对于高阶项对于hθ(x)的影响也会尽量小,几乎没有。这样就预防了过拟合。 正则化的线性回归模型 是正则项,λ是正则化 ...

Wed Dec 05 05:34:00 CST 2018 0 728
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM