Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一。Seq2seq被广泛应用在机器翻译、聊天机器人甚至是图像生成文字等情境。 seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是 ...
一 摘要种类 抽取式摘要 直接从原文中抽取一些句子组成摘要。本质上就是个排序问题,给每个句子打分,将高分句子摘出来,再做一些去冗余 方法是MMR 等。这种方式应用最广泛,因为比较简单。经典方法有LexRank和整数线性规划 ILP 。 LexRank是将文档中的每个句子都看作节点,句子之间的相似度看作节点之间的边的权重,构建一个graph 然后再计算每个节点的分数,这个打分的计算方式可以是度中心度 ...
2019-03-16 21:17 0 916 推荐指数:
Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一。Seq2seq被广泛应用在机器翻译、聊天机器人甚至是图像生成文字等情境。 seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是 ...
Seq2Seq模型 传统的机器翻译的方法往往是基于单词与短语的统计,以及复杂的语法结构来完成的。基于序列的方式,可以看成两步,分别是 Encoder 与 Decoder,Encoder 阶段就是将输入的单词序列(单词向量)变成上下文向量,然后 decoder根据这个向量来预测翻译 ...
注意力seq2seq模型 大部分的seq2seq模型,对所有的输入,一视同仁,同等处理。 但实际上,输出是由输入的各个重点部分产生的。 比如: (举例使用,实际比重不是这样) 对于输出“晚上”, 各个输入所占比重: 今天-50%,晚上-50%,吃-100%,什么-0% 对于输出“吃 ...
https://pan.baidu.com/s/1Qgyx_2vJirKAcX2HxYuCwA ...
Sequence Generation 引入 在循环神经网络(RNN)入门详细介绍一文中,我们简单介绍了Seq2Seq,我们在这里展开一下 一个句子是由 characters(字) 或 words(词) 组成的,中文的词可能是由数个字构成的。 如果要用训练RNN写句子的话 ...
tensorflow基于 Grammar as a Foreign Language实现,这篇论文给出的公式也比较清楚。 这里关注seq2seq.attention_decode函数, 主要输入 decoder_inputs, initial_state ...
目前实现了基于tensorflow的支持的带attention的seq2seq。基于tf 1.0官网contrib路径下seq2seq 由于后续版本不再支持attention,迁移到melt并做了进一步开发,支持完全ingraph的beam search(更快速) 以及outgraph ...
目录: 1. 前提 2. attention (1)为什么使用attention (2)attention的定义以及四种相似度计算方式 (3)attention类型(scaled dot-product attention \ multi-head attention ...