卷积神经网络:下面要说的这个网络,由下面三层所组成 卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码说明: 代码主要有三部分组成 第一部分: 数据读入 第二部分:模型的构建,用于生成 ...
.tf.nn.lrn pool h , , bias . , alpha . . , beta . 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数说明:pool h 表示输入数据, 表示使用前后几层进行归一化操作,bias表示偏移量,alpha和beta表示系数 局部响应的公式 针对上述公式,做了一个试验代码: .random.sample np.arange N , ...
2019-03-14 13:29 0 1445 推荐指数:
卷积神经网络:下面要说的这个网络,由下面三层所组成 卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码说明: 代码主要有三部分组成 第一部分: 数据读入 第二部分:模型的构建,用于生成 ...
tf.one_hot(indices, depth):将目标序列转换成one_hot编码 tf.one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None ...
运行结果: 2. indices是矩阵 运行结果: ...
1.编码 one_hot编码不再过多叙述,类似于hash的那种方法去改变数的编码方式。比如label存在与(0,1,2,3),那么一条记录的label为3,那么将编码维[0,0,0,1] 2.包: tf.one_hot(label,n_label) 需要注意的是返回的是一个tensor ...
1.什么是One_Hot? 对于这个问题,之前谷歌了一下,还涉及寄存器了(one-hot编码是N位状态寄存器为N个状态进行编码的方式)。。真的无语。这里不说那些很底层的,我们只需要了解one-hot编码是将类别变量转换为机器学习算法中容易处理的一种形式! 概念太抽象了,对太抽了,那么从实际例子 ...
有时我们的样本标签,都是标记从0开始直至到类别的个数。在模型训练的时候,这些标签需要变成one_hot向量,这样才能够跟softmax出来的概率做互熵损失,计算loss。 那么,映射的方法如下: y: 类型是list,样本的类别标签序列 n_class ...
横1. np.concatenate(list, axis=0) 将数据进行串接,这里主要是可以将列表进行x轴获得y轴的串接 参数说明:list表示需要串接的列表,axis=0,表示从上到下进行串接 2.np.hstack(list) 将列表进行横向排列 参数说明:list.append ...
前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络。 首先准备数据: cifar10 的数据集共有 6 万幅 32 * 32 大小的图片,分为 10 类,每类 6000 张,其中 5 万张用于训练 ...