原文:【DeepLearning】深入理解dropout正则化

本文为转载,作者:Microstrong 来源:CSDN 原文:https: blog.csdn.net program developer article details . Dropout简介 . Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据 ...

2019-03-14 09:44 0 651 推荐指数:

查看详情

深入理解L1、L2正则化

过节福利,我们来深入理解下L1与L2正则化。 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称。也就是目标函数变成了原始损失函数+额外项,常用的额外项一般有两种,英文称作 ...

Fri Feb 15 01:27:00 CST 2019 7 6650
1-6 dropout 正则化

dropout 正则化Dropout Regularization) 除了L2正则化,还有一个非常实用的正则化方法——Dropout( 随机失活): 假设你在训练上图这样的神经网络,它存在过拟合,这就是 dropout 所要处理的,我们复制这个神经网络, dropout 会遍历网络 ...

Mon Sep 03 07:01:00 CST 2018 0 1582
1.6 dropout正则化

  除了L2正则化,还有一个非常实用的正则化方法----dropout(随机失活),下面介绍其工作原理。 假设你在训练下图左边的这样的神经网络,它存在过拟合情况,这就是dropout所要处理的。我们复制这个神经网络,dropout会遍历网络每一层,并设置一个消除神经网络中节点的概率 ...

Fri Apr 13 18:06:00 CST 2018 0 1014
TensorFlow——dropout正则化的相关方法

1.dropout dropout是一种常用的手段,用来防止过拟合的,dropout的意思是在训练过程中每次都随机选择一部分节点不要去学习,减少神经元的数量来降低模型的复杂度,同时增加模型的泛化能力。虽然会使得学习速度降低,因而需要合理的设置保留的节点数量。 在TensorFlow中 ...

Mon Jun 03 04:25:00 CST 2019 0 788
(四) Keras Dropout正则化的使用

视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 使用dropout是要改善过拟合,将训练和测试的准确率差距变小 训练集,测试集结果相比差距较大时,过拟合 ...

Wed Feb 27 04:43:00 CST 2019 0 5918
对于正则化理解

本文主要包含以下内容: 一、什么是正则化 二、参数范数模型 2.1 L1正则和L2正则 2.2 为什么通过L1正则、L2正则能够防止过拟合 2.3 L2正则的表现 2.4 L1正则化为什么会产生稀疏解 2.5 L2正则为什么求解比较稳定 三、Dropout和集成方法 3.1 ...

Sun Jul 15 03:22:00 CST 2018 0 13897
【Keras】减少过拟合的秘诀——Dropout正则化

摘要: Dropout正则化是最简单的神经网络正则化方法。阅读完本文,你就学会了在Keras框架中,如何将深度学习神经网络Dropout正则化添加到深度学习神经网络模型里。 Dropout正则化是最简单的神经网络正则化方法。其原理非常简单粗暴:任意丢弃神经网络层中的输入,该层可以是数据 ...

Sat Feb 15 18:37:00 CST 2020 0 1119
9、改善深层神经网络之正则化Dropout正则化

首先我们理解一下,什么叫做正则化?   目的角度:防止过拟合   简单来说,正则化是一种为了减小测试误差的行为(有时候会增加训练误差)。我们在构造机器学习模型时,最终目的是让模型在面对新数据的时候,可以有很好的表现。当你用比较复杂的模型比如神经网络,去拟合数据时,很容易出现过拟合现象(训练集 ...

Fri Aug 20 22:24:00 CST 2021 0 109
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM