1. 损失函数、代价函数与目标函数 损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。 代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就是所有损失函数值的平均。 目标函数(Object Function):是指 ...
. 对数损失函数 在逻辑回归中使用对数损失函数,也有人称之为对数似然损失函数 其中 h x 为对该样本类别预测的概率值 . 平方损失函数 常用于优化最小二乘法,在实际应用中使用均方差损失作为损失函数 . 指数损失函数 Adaboost 学习后补充 .Hinge损失函数 SVM 学习后补充 .交叉熵损失函数 由于sigmoid函数的性质,导致 z 在z取大部分值时会很小 如下图标出来的两端,几近于 ...
2019-03-13 20:41 0 1271 推荐指数:
1. 损失函数、代价函数与目标函数 损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。 代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就是所有损失函数值的平均。 目标函数(Object Function):是指 ...
损失函数 Loss Function 也可称为代价函数 Cost Function,用于衡量预测值与实际值的偏离程度。我们机器学习的目标就是希望预测值与实际值偏离较小,也就是希望损失函数较小,也就是所谓的最小化损失函数。 几种常见的损失函数如下: 1.0-1损失 :可用于分类问题,该函数用户 ...
python金融风控评分卡模型和数据分析微专业课(博主亲自录制视频):http://dwz.date/b9vv 1. 损失函数、代价函数与目标函数 损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。 代价函数(Cost Function):是定义 ...
1. 损失函数、代价函数与目标函数 损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。 代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就是所有损失函数值的平均。 目标函数(Object Function):是指最终 ...
引言 在Quora Question Pairs比赛中,我们的目标是判断给定的两个问题的语义信息是否相同(即是否为重复问题),使用的评估标准是log loss,交叉熵损失函数 \[\frac{1}{N}\sum_{i=0}^{N}{-y_i \log{\widehat{y}_i ...
机器通过损失函数进行学习。这是一种评估特定算法对给定的数据 建模程度的方法。如果预测值与真实值之前偏离较远,那么损失函数便会得到一个比较大的值。在一些优化函数的辅助下,损失函数逐渐学会减少预测值与真实值之间的这种误差。 机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数 ...
1. 平方损失函数 Square Error: $$L(f(x),y)=(f(x)-y)^{2}$$ 这时经验风险函数是MSE,例如在线性回归中出现 2. 绝对值损失函数: $$L(f(x),y)=\vert f(x)-y\vert ...
通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或者回归问题中,通常使用损失函数(代价函数)作为其目标函数。损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的算法使用的损失函数不一样。 损失 ...