数据类别不平衡/长尾分布?不妨利用半监督或自监督学习 在深度学习中处理不均衡数据集 一文教你如何处理不平衡数据集(附代码) 独家 | 指南:不平衡分类的成本敏感决策树(附代码&链接) NeurIPS 2020 | 数据类别不平衡/长尾分布?不妨利用 ...
Deep Learning 深度学习中数据集分布不平衡问题的解决方法 https: blog.csdn.net heiheiya https: blog.csdn.net heiheiya article details 一 标签分类不平衡 在学术中,使用的大部分数据集都是平衡的。也就是在supervised learning中,每一类别通常有数目相同的样本。而在我们采集自己的数据集训练时,获得 ...
2019-03-12 19:22 0 1051 推荐指数:
数据类别不平衡/长尾分布?不妨利用半监督或自监督学习 在深度学习中处理不均衡数据集 一文教你如何处理不平衡数据集(附代码) 独家 | 指南:不平衡分类的成本敏感决策树(附代码&链接) NeurIPS 2020 | 数据类别不平衡/长尾分布?不妨利用 ...
(定义,举例,实例,问题,扩充,采样,人造,改变) 一、不平衡数据集 1)定义 不平衡数据集指的是数据集各个类别的样本数目相差巨大。以二分类问题为例,假设正类的样本数量远大于负类的样本数量,这种情况下的数据称为不平衡数据 2)举例 在二分类问题中,训练集中class 1的样本 ...
一、不平衡数据集的定义 所谓的不平衡数据集指的是数据集各个类别的样本量极不均衡。以二分类问题为例,假设正类的样本数量远大于负类的样本数量,通常情况下通常情况下把多数类样本的比例接近100:1这种情况下的数据称为不平衡数据。不平衡数据的学习即需要在分布不均匀的数据集中学习到有用的信息。 不平衡 ...
在机器学习的实践中,我们通常会遇到实际数据中正负样本比例不平衡的情况,也叫数据倾斜。对于数据倾斜的情况,如果选取的算法不合适,或者评价指标不合适,那么对于实际应用线上时效果往往会不尽人意,所以如何解决数据不平衡问题是实际生产中非常常见且重要的问题。 什么是类别不平衡问题 ...
最近碰到一个问题,其中的阳性数据比阴性数据少很多,这样的数据集在进行机器学习的时候会使得学习到的模型更偏向于预测结果为阴性。查找了相关的一些文献,了解了一些解决这个问题的一些方法和技术。 首先,数据集不平衡会造成怎样的问题呢。一般的学习器都有下面的两个假设:一个是使得学习器的准确率最高 ...
作者丨琥珀里有波罗的海 来源丨机器学习算法与Python实战 前言 数据不平衡问题在机器学习分类问题中很常见,尤其是涉及到“异常检测"类型的分类。因为异常一般指的相对不常见的现象,因此发生的机率必然要小很多。因此正常类的样本量会远远高于异常类的样本量,一般高达几个数量级。比如:疾病相关 ...
一、概述 1.处理方法总结 (1)不平衡数据集 通常情况下通常情况下把多数类样本的比例接近100:1这种情况下的数据称为不平衡数据。不平衡数据的学习即需要在分布不均匀的数据集中学习到有用的信息。 (2)不平衡数据集的处理方法主要分为两个方面 1、从数据的角度出发,主要方法为采样,分为欠 ...
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频,包含catboost实战代码) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission& ...