原文:文献笔记:Deep Reinforcement Learning with Double Q-learning

该文章是针对Hado van Hasselt于 年提出的Double Q learning算法的进一步拓展,是结合了DQN网络后,提出的关于DQN的Double Q learning算法。该算法主要目的是修正DQN中max项所产生的过高估计问题,所谓过高估计,在前面的博客Issues in Using Function Approximation for Reinforcement Learnin ...

2019-03-11 19:34 0 701 推荐指数:

查看详情

论文笔记之:Deep Reinforcement Learning with Double Q-learning

Deep Reinforcement Learning with Double Q-learning Google DeepMind   Abstract   主流的 Q-learning 算法过高的估计在特定条件下的动作值。实际上,之前是不知道是否这样的过高估计是 common ...

Mon Jun 27 23:39:00 CST 2016 0 5332
Deep Learning专栏--强化学习之Q-Learning与DQN(2)

在上一篇文章中介绍了MDP与Bellman方程,MDP可以对强化学习的问题进行建模,Bellman提供了计算价值函数的迭代公式。但在实际问题中,我们往往无法准确获知MDP过程中的转移概率$P$, ...

Fri Mar 29 23:00:00 CST 2019 0 660
DQN(Deep Q-learning)入门教程(四)之Q-learning Play Flappy Bird

在上一篇博客中,我们详细的对Q-learning的算法流程进行了介绍。同时我们使用了\(\epsilon-贪婪法\)防止陷入局部最优。 那么我们可以想一下,最后我们得到的结果是什么样的呢?因为我们考虑到了所有的(\(\epsilon-贪婪法\)导致的)情况,因此最终我们将会得到一张 ...

Sat May 30 09:51:00 CST 2020 0 2847
Q-learning

强化学习基本介绍 强化学习是一种不同于监督学习和无监督学习的在线学习技术,基本模型图一所示。它把学习看作是一个“试探一评价”的过程,首先学习系统称为智能体感知环境状态,采取某一个动作作用于环境,环境 ...

Tue Jan 02 06:33:00 CST 2018 0 8939
强化学习(九)Deep Q-Learning进阶之Nature DQN

    在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning(以下简称DQN)的改进版,今天我们来讨论DQN的第一个改进版Nature DQN ...

Tue Oct 09 04:40:00 CST 2018 28 22657
强化学习(Reinforcement Learning)中的Q-Learning、DQN,面试看这篇就够了!

1. 什么是强化学习 其他许多机器学习算法中学习器都是学得怎样做,而强化学习(Reinforcement Learning, RL)是在尝试的过程中学习到在特定的情境下选择哪种行动可以得到最大的回报。在很多场景中,当前的行动不仅会影响当前的rewards,还会影响之后的状态和一系列 ...

Mon Aug 19 01:44:00 CST 2019 0 2731
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM