神经网络之权重初始化

权重初始化 模型权重的初始化对于网络的训练很重要, 不好的初始化参数会导致梯度传播问题, 降低训练速度; 而好的初始化参数, 能够加速收敛, 并且更可能找到较优解. 如果权重一开始很小,信号到达最后也会很小;如果权重一开始很大,信号到达最后也会很大。不合适的权重初始化会使得隐藏层的输入 ...

Thu Mar 02 06:18:00 CST 2017 1 13501
神经网络--参数初始化

1. 参数初始化的目的是什么? 为了让神经网络在训练过程中学习到有用的信息,这意味着参数梯度不应该为0。而我们知道在全连接的神经网络中,参数梯度和反向传播得到的状态梯度以及入激活值有关。那么参数初始化应该满足以下两个条件: 初始化必要条件一:各层激活值不会出现饱和现象 ...

Thu Oct 18 04:39:00 CST 2018 1 1610
matlab神经网络函数

1.设计函数 solvein 设计线性网络; solverb 设计径向基网络; solverbe 设计精确的径向基网络; solvehop 设计Hopfield网络。 2.传递函数 ...

Fri Nov 18 20:01:00 CST 2016 0 1630
为何神经网络权重初始化要随机初始化,不能以0为初始化

根据deeplearn.ai吴恩达深度学习课程3.11总结 因为如果W初始化为0 则对于任何Xi,每个隐藏层对应的每个神经元的输出都是相同的,这样即使梯度下降训练,无论训练多少次,这些神经元都是对称的,无论隐藏层内有多少个结点,都相当于在训练同一个函数。 ...

Mon Dec 18 04:45:00 CST 2017 0 4209
RBF神经网络--Matlab newrbe函数

newrbe x->表示向量 1.这个形式的神经网络不需要训练, 2.net模型中会保存全部训练数据即矩阵 IW中,新输入的样本p-> 会跟IW矩阵中的每个样本计算距离, radbas(||dist||.* b->)后 形成a-> 所以向量a-> ...

Sat May 16 16:57:00 CST 2020 0 1254
神经网络的参数初始化和批量归一

1 参数初始化 神经网络的参数学习是一个非凸优化问题,在使用梯度下降法进行网络参数优化时,参数初始值的选取十分关键,关系到网络的优化效率(梯度消失和梯度爆炸问题)和泛化能力(局部最优解问题)。参数初始化的方式通常有以下三种: 预训练初始化:不同的参数初始值会收敛到不同的局部最优解 ...

Thu Sep 03 01:57:00 CST 2020 0 691
神经网络参数固定初始化pytorch

神经网络中,参数默认是进行随机初始化的。如果不设置的话每次训练时的初始化都是随机的,导致结果不确定。如果设置初始化,则每次初始化都是固定的。 ...

Wed Mar 17 16:25:00 CST 2021 0 431
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM