转载:https://www.cnblogs.com/jasonfreak/p/5448385.html 特征选择主要从两个方面入手: 特征是否发散:特征发散说明特征的方差大,能够根据取值的差异化度量目标信息. 特征与目标相关性:优先选取与目标高度相关性的. 对于特征选择,有时候 ...
特征选择是特征工程中的重要一环,其主要目的是从所有特征中选出相关特征 relevant feature ,或者说在不引起重要信息丢失的前提下去除掉无关特征 irrelevant feature 和冗余特征 redundant feature 。进行特征选择的好处主要有以下几种: 降低过拟合风险,提升模型效果 提高训练速度,降低运算开销 更少的特征通常意味着更好的可解释性 不同的模型对于无关特征的容 ...
2019-03-08 06:45 1 5279 推荐指数:
转载:https://www.cnblogs.com/jasonfreak/p/5448385.html 特征选择主要从两个方面入手: 特征是否发散:特征发散说明特征的方差大,能够根据取值的差异化度量目标信息. 特征与目标相关性:优先选取与目标高度相关性的. 对于特征选择,有时候 ...
特征选择)。卡方检验和信息增益是feature weight algorithm常用且效果较优的算法。 ...
前言: 上一篇提到了特征提取,或者叫做降维。在文本分类中,特征提取算法的优劣对于文本分类的结果具有非常大的影响。 所以选择效果好的特征提取算法是文本分类前中很重要的步骤。于是这篇就对卡方检验做一个介绍。这是一个效果很好的特征提取方法。 之前对卡方检验做过介绍:卡方检验是通过对特征进行打分然后排 ...
:卡方,F检验,互信息 3.1.2.1 卡方过滤 卡方过滤是专门针对离散型标签(即分类问题)的相关 ...
Python有包可以直接实现特征选择,也就是看自变量对因变量的相关性。今天我们先开看一下如何用卡方检验实现特征选择。 1. 首先import包和实验数据: 结果输出: 2. 使用卡方检验来选择特征 结果输出为:array([[ 1.4, 0.2 ...
Chi-square distribution introduction 这个视频真的好,完美地解释了卡方统计量是怎么来的! 我们有一个标准正态分布的总体,我们从其中抽一次,取该值的平方就是Q1统计量;抽两次,取两次值得平方和,就是Q2统计量;以此类推。。。 这就是自由度逐渐增加的卡方分布 ...
Excel计算p值 T检验 TDIST函数 http://www.caohaifeng.com/view/169.html F检验 FDIST函数 http://excel880.com/help/2010/content/hp10335642.htm 卡方检验 CHIDIST函数 ...
一、假设检验 假设检验是根据一定的假设条件,由样本推断总体的一种方法。 假设检验的基本思想是小概率反证法思想,小概率思想认为小概率事件在一次试验中基本上不可能发生,在这个方法下,我们首先对总体作出一个假设,这个假设大概率会成立,如果在一次试验中,试验结果和原假设相背离,也就是小概率事件竟然发生 ...