实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问 ...
在机器学习的实践中,我们通常会遇到实际数据中正负样本比例不平衡的情况,也叫数据倾斜。对于数据倾斜的情况,如果选取的算法不合适,或者评价指标不合适,那么对于实际应用线上时效果往往会不尽人意,所以如何解决数据不平衡问题是实际生产中非常常见且重要的问题。 什么是类别不平衡问题 我们拿到一份数据时,如果是二分类问题,通常会判断一下正负样本的比例,在机器学习中,通常会遇到正负样本极不均衡的情况,如垃圾邮件 ...
2019-03-01 13:32 3 13665 推荐指数:
实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问 ...
最近碰到一个问题,其中的阳性数据比阴性数据少很多,这样的数据集在进行机器学习的时候会使得学习到的模型更偏向于预测结果为阴性。查找了相关的一些文献,了解了一些解决这个问题的一些方法和技术。 首先,数据集不平衡会造成怎样的问题呢。一般的学习器都有下面的两个假设:一个是使得学习器的准确率最高 ...
机器学习之类别不平衡问题 (1) —— 各种评估指标 机器学习之类别不平衡问题 (2) —— ROC和PR曲线 机器学习之类别不平衡问题 (3) —— 采样方法 完整代码 在二分类问题中,通常假设正负类别相对均衡,然而实际应用中类别不平衡的问题,如100, 1000, 10000倍 ...
机器学习之类别不平衡问题 (1) —— 各种评估指标 机器学习之类别不平衡问题 (2) —— ROC和PR曲线 机器学习之类别不平衡问题 (3) —— 采样方法 完整代码 前两篇主要谈类别不平衡问题的评估方法,重心放在各类评估指标以及ROC和PR曲线上,只有在明确了这些后 ...
引言:我们假设有这种情况,训练数据有反例998个,正例2个,模型是一个永远将新样本预测为反例的学习器,就能达到99.8%的精度,这样显然是不合理的。 类别不平衡:分类任务中不同类别的训练样例数差别很大。 一般我们在训练模型时,基于样本分布均匀的假设。从线性分类器的角度 ...
机器之心编译 参与:孙睿、吴攀、李亚洲 本文作者 Tom Fawcett 在机器学习和数 ...
从重采样到数据合成:如何处理机器学习中的不平衡分类问题? 转载自【机器之心】http://www.jiqizhixin.com/article/2499本文作者为来自 KPMG 的数据分析顾问 Upasana Mukherjee 如果你研究过一点机器学习和数据科学,你肯定遇到过不平衡的类分布 ...
样本不平衡往往会导致以下问题: 对比例小的样本造成过拟合,也就是说预测偏向样本数较多的分类。这样就会大大降低模型的范化能力。往往accuracy(准确率)很高,但auc很低。 针对样本的不平衡问题,有以下几种常见的解决思路: 搜集更多的数据 改变评判指标 对数据进行采样 ...