BERT,全称是Bidirectional Encoder Representations from Transformers。可以理解为一种以Transformers为主要框架的双向编码表征模型。所以要想理解BERT的原理,还需要先理解什么是Transformers。 Trans ... ...
一,背景 横空出世的BERT全面超越人类 年在自然语言处理 NLP 领域最具爆炸性的一朵 蘑菇云 莫过于Google Research提出的BERT Bidirectional Encoder Representations from Transformers 模型。作为一种新型的语言表示模型,BERT以 摧枯拉朽 之势横扫包括语言问答 理解 预测等各项NLP锦标的桂冠,见图 和图 。 图 SQu ...
2019-02-25 15:03 0 568 推荐指数:
BERT,全称是Bidirectional Encoder Representations from Transformers。可以理解为一种以Transformers为主要框架的双向编码表征模型。所以要想理解BERT的原理,还需要先理解什么是Transformers。 Trans ... ...
1.什么是Bert? Bert用我自己的话就是:使用了transformer中encoder的两阶段两任务两版本的语言模型 没错,就是有好多2,每个2有什么意思呢? 先大体说一下,两阶段是指预训练和微调阶段,两任务是指Mask Language和NSP任务,两个版本是指Google发布 ...
在去年11月份,NLP大神Manning联合谷歌做的ELECTRA一经发布,迅速火爆整个NLP圈,其中ELECTRA-small模型参数量仅为 BERT-base模型的1/10,性能却依然能与BERT、RoBERTa等模型相媲美。 在前不久,谷歌终于开源了ELECTRA,并发布了预训练模型,这对 ...
之前看过一条评论说Bert提出了很好的双向语言模型的预训练以及下游迁移的框架,但是它提出的各种训练方式槽点较多,或多或少都有优化的空间。这一章就训练方案的改良,我们来聊聊RoBERTa和SpanBERT给出的方案,看作者这两篇paper是一个组的作品,所以彼此之间也有一些共同点。正在施工中的代码库 ...
BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters BERT-Large, Cased (Whole Word Masking): 24-layer ...
随着预训练模型越来越成熟,预训练模型也会更多的在业务中使用,本文提供了bert和albert的快速训练和部署,实际上目前的预训练模型在用起来时都大致相同。 基于不久前发布的中文数据集chineseGLUE,将所有任务分成四大类:文本分类,句子对判断,实体识别,阅读理解。同类可以共享代码 ...
一.简介 import re import math import numpy as np import random text = ( '随后,文章为中美关系未来发展提出了 ...