关于深度学习的优化方法(On Optimization Methods for Deep Learning) 摘要 在训练深度学习时我们的主要方法是随机梯度下降法(stochastic gradient descent methods , SGDs)。尽管它易于实现,但SGDs调整困难 ...
梯度下降算法 梯度下降的框架主要分三种: ,全量梯度下降。每次使用全部的样本来更新模型参数,优点是收敛方向准确,缺点是收敛速度慢,内存消耗大。 ,随机梯度下降。每次使用一个样本来更新模型参数,优点是学习速度快,缺点是收敛不稳定。 ,批量梯度下降。每次使用一个batchsize的样本来更新模型参数,平衡了全量梯度下降和随机梯度下降的方法。 batch gradient descent BGD 批量梯 ...
2019-02-23 22:29 0 569 推荐指数:
关于深度学习的优化方法(On Optimization Methods for Deep Learning) 摘要 在训练深度学习时我们的主要方法是随机梯度下降法(stochastic gradient descent methods , SGDs)。尽管它易于实现,但SGDs调整困难 ...
在上一篇文章中 深度学习中的优化方法(一) - ZhiboZhao - 博客园 (cnblogs.com) 我们主要讲到了一维函数 \(f(x):R \rightarrow R\) 的优化方法,在实际情况中,待优化的函数往往是多维的 \(f(x):R^{n} \rightarrow R ...
写在前面:梯度下降法是深度学习优化的基础,因此本文首先探讨一维优化算法,然后扩展到多维。本文根据《最优化导论》(孙志强等译)的内容整理而来,由于笔者水平和精力有限,在此只是在简单层面做一个理解,如果要追求更严谨的数学理论,请大家参考相关书籍。在本文中,我们讨论目标函数为一元单值函数 \(f:R ...
深度学习模型优化方法有: (1)模型压缩:模型权重量化、模型权重稀疏、模型通道剪枝 (2)优化推理引擎:TVM、tensorRT、OpenVINO 模型压缩 (1)quantization:模型权重量化 (2)sparsification:模型权重稀疏 (3)channel pruning ...
附python代码如下: 原始的pdf文档如果需要可以在https://pan.baidu.com/s/1GhGu2c_RVmKj4hb_bje0Eg下载. ...
目录 mini-batch 指数加权平均 优化梯度下降法:momentum、RMSprop、Adam 学习率衰减 局部最优问题 一、mini-batch mini-batch:把训练集划分成小点的子集 表示法 $x ...
前言 以下内容是个人学习之后的感悟,转载请注明出处~ Mini-batch梯度下降法 见另一篇文章:梯度下降法。 指数加权平均 其原理如下图所示,以每天的温度为例,每天的温度加权平均值等于β乘以前一天的温度加权平均值,再加上(1-β)乘以 ...
深层神经网络的参数学习主要通过梯度下降法来寻找一组可以最小化结构风险的参数。在具体实现中,梯度下降法可以分为:批量梯度下降、随机梯度下降和小批量梯度下降三种形式。 而对于这三种梯度下降的方法,又可以从调整学习率、调整负梯度两个方向来进行改进,比如RMSprop,Momentum和Adam ...