一、SIFT算法特征原理 SIFT即尺度不变特征转换,它用来检测图像的局部性特征,在空间尺度中寻找极值点,提取这点的位置、尺度、旋转不变量。这些关键点是一些十分突出,不会因光照和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等,所以与影像的大小和旋转无关,对光线、噪声、视角改变 ...
SIFT算法是一种基于尺度空间的算法。利用SIFT提取出的特征点对旋转 尺度变化 亮度变化具有不变性,对视角变化 仿射变换 噪声也有一定的稳定性。 SIFT实现特征的匹配主要包括四个步骤: 提取特征点 计算关特征点的描述子 利用描述子的相似程度对特征点进行匹配 消除误匹配点 提取特征点 构建尺度空间:模拟图像的多尺度特征。经证实,唯一可能的尺度空间核是高斯函数。用L x,y, 表示一幅图像的尺度空 ...
2019-02-21 17:58 0 588 推荐指数:
一、SIFT算法特征原理 SIFT即尺度不变特征转换,它用来检测图像的局部性特征,在空间尺度中寻找极值点,提取这点的位置、尺度、旋转不变量。这些关键点是一些十分突出,不会因光照和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等,所以与影像的大小和旋转无关,对光线、噪声、视角改变 ...
SIFT/SURF为了实现不同图像中相同场景的匹配,主要包括三个步骤: 1. 尺度空间的建立; 2.特征点的提取; 3.利用特征点周围邻域的信息生成特征描述子; 4.特征点匹配。 SIFT 1.生成高斯差分金字塔(DOG),尺度空间构建 (1)通过对原始图像进行尺度变换,获得图像 ...
1.SIFT简介 SIFT的英文全称叫Scale-invariant feature transform,也叫尺度不变特征变换算法,是由David Lowe 先提出的,也是过去十年中最成功的图像局部描述子之一。SIFT 特征包括兴趣点检测器和描述子。SIFT 描述子具有非常强稳健性,这在 ...
输入两张图像 提取sift特征点 使用knnmatch进行最近邻匹配 ...
1.SIFT特征原理描述 SIFT的全称是Scale Invariant Feature Transform,由加拿大教授David G.Lowe提出的。SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果,是一种非常稳定的局部特征。 总体来说 ...
https://www.zhihu.com/question/23371175 我需要把一张照片和训练集中的图片进行匹配。我把一张照片提取特征值并建立kd树,然后把训练集的图片依次读进来,然后把图片的特征点依次放进kd树里面找最近 ...
特征匹配部分由ORB篇已介绍OPENCV中特征匹配需要用到的一些函数和类的封装完成,本篇不再介绍。SIFT和SURF由于版权问题,(SIFT在2020年(今年)3月6日专利有限期20年过期,OPENCV后续的版本中可能会有相应接口。)在opencv4.1+中没有函数接口,可通过安装对应版本 ...
SIFT特征和SURF特征比较 比较项目 SIFT SURF 尺度空间极值检测 使用高斯滤波器,根据不同尺度的高斯差(DOG)图像寻找局部极值 使用方形滤波器,利用海森矩阵的行列式值检测极值,并利用积分图加速运算 ...