0. 目录 1. 前言 2. Transformer模型结构 2.1 Transformer的编码器解码器 2.2 输入层 2.3 位置向量 2.4 Attention模型 3. 总结 ...
. 语言模型 . Attention Is All You Need Transformer 算法原理解析 . ELMo算法原理解析 . OpenAI GPT算法原理解析 . BERT算法原理解析 . 从Encoder Decoder Seq Seq 理解Attention的本质 . Transformer XL原理介绍 . 前言 注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理 ...
2019-02-20 22:16 5 6865 推荐指数:
0. 目录 1. 前言 2. Transformer模型结构 2.1 Transformer的编码器解码器 2.2 输入层 2.3 位置向量 2.4 Attention模型 3. 总结 ...
from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一、Seq2Seq 模型 1. 简介 Sequence-to-sequence (seq2seq) 模型,顾名思义,其输入是一个序列,输出也是一个序列 ...
Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一。Seq2seq被广泛应用在机器翻译、聊天机器人甚至是图像生成文字等情境。 seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是 ...
Seq2Seq模型 传统的机器翻译的方法往往是基于单词与短语的统计,以及复杂的语法结构来完成的。基于序列的方式,可以看成两步,分别是 Encoder 与 Decoder,Encoder 阶段就是将输入的单词序列(单词向量)变成上下文向量,然后 decoder根据这个向量来预测翻译 ...
注意力seq2seq模型 大部分的seq2seq模型,对所有的输入,一视同仁,同等处理。 但实际上,输出是由输入的各个重点部分产生的。 比如: (举例使用,实际比重不是这样) 对于输出“晚上”, 各个输入所占比重: 今天-50%,晚上-50%,吃-100%,什么-0% 对于输出“吃 ...
Sequence Generation 引入 在循环神经网络(RNN)入门详细介绍一文中,我们简单介绍了Seq2Seq,我们在这里展开一下 一个句子是由 characters(字) 或 words(词) 组成的,中文的词可能是由数个字构成的。 如果要用训练RNN写句子的话 ...
tensorflow基于 Grammar as a Foreign Language实现,这篇论文给出的公式也比较清楚。 这里关注seq2seq.attention_decode函数, 主要输入 decoder_inputs, initial_state ...
目前实现了基于tensorflow的支持的带attention的seq2seq。基于tf 1.0官网contrib路径下seq2seq 由于后续版本不再支持attention,迁移到melt并做了进一步开发,支持完全ingraph的beam search(更快速) 以及outgraph ...