原文:Product Quantization for Nearest Neighbor Search 论文笔记

摘要 本文介绍了一种基于乘积量化的近似最近邻搜索方法。 这个想法是将空间分解为低维子空间的笛卡尔积,并分别量化每个子空间。 矢量由其子空间量化索引和短码表示。 可以从它们的码字有效地估计两个矢量之间的欧氏距离。 非对称版本增加了精度,因为它计算向量和码字之间的近似距离。 实验结果表明,我们的方法有效地搜索最近邻居,特别是与倒置文件系统相结合。 SIFT和GIST图像描述符的结果显示出优异的搜索精 ...

2019-02-17 10:12 0 558 推荐指数:

查看详情

Optimized Product Quantization 论文笔记

摘要   乘积量化(PQ)是一种有效的矢量量化方法。乘积量化器可以以非常低的存储器/时间成本生成指数大的码本。 PQ的本质是将高维向量空间分解为子空间的笛卡尔乘积,然后分别量化这些子空间。 ...

Thu Mar 14 21:19:00 CST 2019 0 596
论文笔记系列-Neural Architecture Search With Reinforcement Learning

摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的。在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率。 在 CIFAR-10数据集上,基于本文提出的方法生成的模型在测试集上得 ...

Sun Jul 22 03:11:00 CST 2018 0 1240
论文笔记系列-DARTS: Differentiable Architecture Search

Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成 ...

Thu Sep 06 05:28:00 CST 2018 0 2026
论文笔记——NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING

论文地址:https://arxiv.org/abs/1611.01578 1. 论文思想 强化学习,用一个RNN学一个网络参数的序列,然后将其转换成网络,然后训练,得到一个反馈,这个反馈作用于RNN网络,用于生成新的序列。 2. 整体架构 3. RNN网络 4. 具体实现 ...

Mon Nov 20 04:31:00 CST 2017 0 1759
论文笔记系列--Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation

为方便说明,如无特殊说明后文将PDARTS来指代该篇论文。阅读本文之前需要对DARTS有一定了解。,如果还不太清楚DARTS可以阅读这篇文章。 Motivation 进来有很多种NAS技术相继提出,主要有基于强化学习的,基于进化算法的,还有基于梯度下降的,不同算法有不同优缺点。本文 ...

Fri Jan 24 03:13:00 CST 2020 1 727
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM