1. 前言 上一篇博客我们介绍了价值迭代的原理。这一节我们实现强化学习里面的价值迭代的部分代码(完整代码GitHub)。 2. 价值迭代回顾 我们把注意点放在值函数上,等值函数收敛了,我们的策略也会收敛到最优值。 \[v^{T+1}(s) =max_{a} \sum_{s_{t+1 ...
. 前言 今天要重代码的角度给大家详细介绍下策略迭代的原理和实现方式。本节完整代码GitHub。 我们开始介绍策略迭代前,先介绍一个蛇棋的游戏 它是我们后面学习的环境,介绍下它的规则: 玩家每人拥有一个棋子,出发点在图中标为 的格子处。 依次掷骰子,根据骰子的点数将自己的棋子向前行进相应的步数。假设笔者的棋子在 处,并且投掷出 ,则笔者的棋子就可以到达 的位置。 棋盘上有一些梯子,它的两边与棋盘 ...
2019-02-15 23:31 0 1932 推荐指数:
1. 前言 上一篇博客我们介绍了价值迭代的原理。这一节我们实现强化学习里面的价值迭代的部分代码(完整代码GitHub)。 2. 价值迭代回顾 我们把注意点放在值函数上,等值函数收敛了,我们的策略也会收敛到最优值。 \[v^{T+1}(s) =max_{a} \sum_{s_{t+1 ...
1. 前言 在强化学习-MDP(马尔可夫决策过程)算法原理中我们已经介绍了强化学习中的基石--MDP,本文的任务是介绍如何通过价值函数,去寻找到最优策略,使得最后得到的奖励尽可能的多。 2. 回顾MDP 通过学习MDP我们得到了2个Bellman公式: 状态值函数 ...
【强化学习】值迭代和策略迭代 在强化学习中我们经常会遇到策略迭代与值迭代,但是很多人都搞不清楚他们两个之间的区别,他们其实都是强化学习中的动态规划方法(DP)。 ——《Reinforcement Learning:An Introduction》 (一)值迭代 对每一个当前状态 ...
RL是一个序列化决策过程,核心思想是通过与环境的不断交互学习获得最大回报; 大部分RL方法都是基于MDP的;MDP的本质是获得一个可以使累计收益最大化的策略,并使用该策略选择最佳动作; 动态规划是RL中的一个关键技术,适用于RL中已知模型求解最优策略的特殊情况,主要有 策略迭代 和 值 ...
0x00 机器学习基础 机器学习可分为三类 监督学习 无监督学习 强化学习 三种学习类别的关键点 监督学习需要人为设置参数,设置好标签,然后将数据集分配到不同标签。 无监督学习同样需要设定参数,对无标签的数据集进行分组。 强化学习需要人为设置初始参数 ...
1. 前言 在策略迭代最后我们发现策略迭代的收敛过程比较慢,那我们就会想有没更好更快的迭代方法,今天我们介绍的价值迭代就是另一种寻找最优策略的解决方案。 2. 动态规划 价值迭代需要用到动态规划的思想,那我们简单的回顾下动态规划的特点。 最优子结构:是指一个子问题的最优解是可以得到 ...
使用策略梯度解决离散action space问题。 一、导入包,定义hyper parameter 二、PolicyGradient Agent的构造函数: 1、设置问题的状态空间维度,动作空间维度; 2、序列采样的存储结构; 3、调用创建用于策略函数近似的神经网络 ...
强化学习详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10789375.html 目录 1.引言 ...