记得上次练习了神经网络分类,不过当时应该有些地方写的还是不对。 这次用神经网络识别mnist手写数据集,主要参考了深度学习工具包的一些代码。 mnist数据集训练数据一共有28*28*60000个像素,标签有60000个。 测试数据一共有28*28*10000个,标签10000 ...
NIST手写数据集的识别算得上是深度学习的 hello world 了,所以想要入门必须得掌握。新手入门可以考虑使用Keras框架达到快速实现的目的。 完整代码如下: 运行结果如下: 可以看出准确率达到了 ,说明神经网络在图像识别上具有巨大的优势。 ...
2019-02-15 18:39 0 660 推荐指数:
记得上次练习了神经网络分类,不过当时应该有些地方写的还是不对。 这次用神经网络识别mnist手写数据集,主要参考了深度学习工具包的一些代码。 mnist数据集训练数据一共有28*28*60000个像素,标签有60000个。 测试数据一共有28*28*10000个,标签10000 ...
记得上次练习了神经网络分类,不过当时应该有些地方写的还是不对。 这次用神经网络识别mnist手写数据集,主要参考了深度学习工具包的一些代码。 mnist数据集训练数据一共有28*28*60000个像素,标签有60000个。 测试数据一共有28*28*10000个,标签10000 ...
目录 下载数据集 加载数据集 构建神经网络 反向传播(BP)算法 进行预测 F1验证 总结 参考 在本章节中,并不会对神经网络进行介绍,因此如果不了解神经网络的话,强烈推荐先去看《西瓜书 ...
代码: ...
这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容。 程序的开头是导入TensorFlow: import tensorflow as tf from ...
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率。这次换一种神经网络(多层神经网络)来进行训练和测试。 1、获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便。关于MNIST的基本信息可以参考我的上一篇随笔 ...
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%。在换用多层神经网络后,正确率已有很大的提升。这次将采用卷积神经网络继续进行测试。 1、模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层)。其中卷积层 ...
下载python源代码之后,使用: 下载下来的数据集分成: mnist.train.images 60000*784 mnist.train.labels 60000*10 mnist.test.images 60000*784 mnist ...