代码来自github:https://github.com/TKJElectronics/KalmanFilter 主要贴出了Kalmanfilter相关部分代码,下面将结合Kalmanfilter的5公式解析上面代码。 Step 1.KalmanFilter ...
代码来自github:https://github.com/TKJElectronics/KalmanFilter 主要贴出了Kalmanfilter相关部分代码,下面将结合Kalmanfilter的5公式解析上面代码。 Step 1.KalmanFilter ...
卡尔曼滤波法 卡尔曼滤波算法是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法,是一种最优化自回归数据处理算法。 通俗地讲,对系统 \(k-1\) 时刻的状态,我们有两种途径来获得系统 \(k\) 时刻的状态。一种是根据常识或者系统以往的状态表现来预测 \(k ...
我们写一个主程序,包括两个函数更新函数和预测函数,然后导入一系列测量和运动数据。 如果初始估计是5,非常好,但我们将其设置为mu=0,且不确定性非常高为sig=10000. 我们假设测量不确定 ...
卡尔曼滤波的推导 1 最小二乘法 在一个线性系统中,若\(x\)为常量,是我们要估计的量,关于\(x\)的观测方程如下: \[y = Hx + v \tag{1.1} \] \(H\)是观测矩阵(或者说算符),\(v\)是噪音,\(y\)是观察量 ...
在我总结Kalman filtering之前请允许我发泄一下,网上的各版本的卡尔曼滤波方程的变量字母真是多,而范例却全都是同一个测量气温的简单例子,单纯看书的话公式自己又推不出来,真是日了狗了。 好了,说到卡尔曼滤波,我对卡尔曼滤波的初步理解就是(反正这句话也是抄的,看看就好 ...
code outputs ...
什么是卡尔曼滤波? 你可以在任何含有不确定信息的动态系统中使用卡尔曼滤波,对系统下一步的走向做出有根据的预测,即使伴随着各种干扰,卡尔曼滤波总是能指出真实发生的情况。 在连续变化的系统中使用卡尔曼滤波是非常理想的,它具有占用内存小的优点(除了前一个状态量外,不需要保留其它历史数据 ...
效果: ...