原文:机器学习经典分类算法 —— C4.5算法(附python实现代码)

目录 理论介绍 什么是分类 分类的步骤 什么是决策树 决策树归纳 信息增益 相关理论基础 计算公式 ID C . python实现 参考资料 理论介绍 什么是分类 分类属于机器学习中监督学习的一种。模型的学习在被告知每个训练样本属于哪个类的 指导 下进行,新数据使用训练集中得到的规则进行分类。 分类的步骤 什么是决策树 决策树归纳 信息增益 相关理论基础 计算公式 ID 注:生成的决策树有误,f ...

2019-01-29 15:42 2 1712 推荐指数:

查看详情

Python3实现机器学习经典算法(四)C4.5决策树

一、C4.5决策树概述   C4.5决策树是ID3决策树的改进算法,它解决了ID3决策树无法处理连续型数据的问题以及ID3决策树在使用信息增益划分数据集的时候倾向于选择属性分支更多的属性的问题。它的大部分流程和ID3决策树是相同的或者相似的,可以参考我的上一篇博客:https ...

Thu Sep 13 16:51:00 CST 2018 0 3367
Python机器学习(十九)决策树之系列二—C4.5原理与代码实现

ID3算法缺点 它一般会优先选择有较多属性值的Feature,因为属性值多的特征会有相对较大的信息增益,信息增益反映的是,在给定一个条件以后,不确定性减少的程度, 这必然是分得越细的数据集确定性更高,也就是条件熵越小,信息增益越大。为了解决这个问题,C4.5就应运而生,它采用信息增益 ...

Thu Jun 18 02:55:00 CST 2020 0 605
机器学习总结(八)决策树ID3,C4.5算法,CART算法

本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点。 决策树:是一种基本的分类和回归方法。在分类问题中,是基于特征对实例进行分类。既可以认为是if-then规则的集合,也可以认为是定义在特征空间和类空间上的条件概率分布。 决策树模型:决策树由结点 ...

Sat Nov 03 20:29:00 CST 2018 0 660
[转]机器学习——C4.5 决策树算法学习

1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法。它是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习C4.5分类 ...

Thu Dec 18 19:28:00 CST 2014 0 3541
机器学习--决策树算法(ID3 C4.5)

在生活中,“树”这一模型有很广泛的应用,事实证明,它在机器学习分类和回归领域也有着深刻而广泛的影响。在决策分析中,决策树可以明确直观的展现出决策结果和决策过程。如名所示,它使用树状决策模型。它不仅仅是在数据挖掘中用户获取特定目标解的策略,同时也被广泛的应用于机器学习。 如何使用树来表示算法 ...

Mon Oct 25 18:19:00 CST 2021 0 842
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM