首先我们为什么要使用这些呢? 举个简单的例子,假设我们图像里面只有1个目标,但是定位出来10个框,1个正确的,9个错误的,那么你要按(识别出来的正确的目标/总的正确目标)来算,正确率100%,但是其实效果不是很好,而且还有框的各种情况,因此我们需要下面的指标来衡量一个目标检测模型的好坏 ...
使用不同的性能指标对算法进行评价往往会有不同的结果,也就是说模型的好坏是相对的。方法的好坏不仅取决于算法和数据,还决定于任务的需求。因此,选取一个合理的模型评价指标是非常有必要的。这里主要探讨一下图像处理中对object检测的评价方法。其中包括Precision amp Recall,IOU,AP,MAP。 Precision amp Recall 准确率Precision: 预测结果中,有多少是 ...
2019-01-22 19:59 0 729 推荐指数:
首先我们为什么要使用这些呢? 举个简单的例子,假设我们图像里面只有1个目标,但是定位出来10个框,1个正确的,9个错误的,那么你要按(识别出来的正确的目标/总的正确目标)来算,正确率100%,但是其实效果不是很好,而且还有框的各种情况,因此我们需要下面的指标来衡量一个目标检测模型的好坏 ...
@ 目录 一、IOU 二、mAP 2.1 简介 2.2 计算方法 三、模型速度 一、IOU 交并比loU(intersection-over-union) 二、mAP 2.1 简介 mAP(mean average ...
1. TP TN FP FN GroundTruth 预测结果 TP(True Positives): 真的正样本 = 【正样本 被正确分为 正样本】 TN(True Negatives): ...
一、mAP 这里首先介绍几个常见的模型评价术语,现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive)分别是: 1)True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本 ...
目录 Intersection Over Union(IOU) 目标检测中的TP、FP、FN、TN AP指标 mAP指标 AP50、AP@50:5:95指标 实际应用场景下的指标 参考资料 Intersection ...
查准率、查全率、AP、map,参考知乎地址:https://zhuanlan.zhihu.com/p/94597205 TP (True Positive):一个正确的检测,检测的IOU ≥ threshold。即预测的边界框(bounding box)中分类正确且边界框坐标正确的数量。在实际 ...
AP & mAP AP:PR 曲线下面积(下面会说明) mAP:mean Average Precision, 即各类别 AP 的平均值 TP、FP、FN、TN True Positive (TP): IoU> ( 一般取 0.5 ) 的检测框数量(同一 ...
介绍目标检测中三种最常见的代码。 1 IOU代码 2 NMS代码 3 mAP 参考1 参考2 ...