这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network training by reducing internal covariate shift 和下面 ...
背景 作者: DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor 欢迎大家关注我的公众号, 互联网西门二少 ,我将继续输出我的技术干货 在分布式训练时,提高计算通信占比是提高计算加速比的有效手段,当网络通信优化到一定程度时,只有通过增加每个worker上的batch size来提升计算量,进而提高计算通信占比。然而一直以来Deep Learn ...
2019-01-20 23:12 0 763 推荐指数:
这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network training by reducing internal covariate shift 和下面 ...
转自:https://www.zhihu.com/people/xutan 最近在进行多GPU分布式训练时,也遇到了large batch与learning rate的理解调试问题,相比baseline的batch size,多机同步并行(之前有答案是介绍同步并行的通信框架NCCL(谭旭 ...
Large-Scale Adversarial Training for Vision-and-Language Representation Learning 2020-06-12 10:25:21 Paper: https://arxiv.org/abs ...
背景 特征工程是绕不开的话题,巧妙的特征组合也许能够为模型带来质的提升。但同时,特征工程耗费的资源也是相当可观的,对于后期模型特征的维护、模型线上部署不太友好。2016年,微软提出Deep Crossing模型,旨在解决特征工程中特征组合的难题,降低人力特征组合的时间开销,通过模型自动学习特征 ...
说实话,这篇paper看了很久,,到现在对里面的一些东西还不是很好的理解。 下面是我的理解,当同行看到的话,留言交流交流啊!!!!! 这篇文章的中心点:围绕着如何降低 internal covariate shift 进行的, 它的方法就是进行batch normalization ...
内容: 本文主要是参考论文:On optimization methods for deep learning,文章内容主要是笔记SGD(随机梯度下降),LBFGS(受限的BFGS),CG(共轭梯度法)三种常见优化算法的在deep learning体系中的性能。下面是一些读完的笔记 ...
covariate shift”,由于每一层的分布不一样,就会导致训练很慢 梯度消失和梯度爆炸:深度网络中微小 ...
1,Introduction 当你想训练好一个神经网络时,你需要做好三件事情:一个合适的网络结构,一个合适的训练算法,一个合适的训练技巧: 合适的网络结构:包括网络结构和激活函数,你可以选 ...