R语言 逐步回归分析 逐步回归分析是以AIC信息统计量为准则,通过选择最小的AIC信息统计量,来达到删除或增加变量的目的。 R语言中用于逐步回归分析的函数 step() drop1() add1() #1.载入数据 首先对数据进行多元线性回归 ...
主成分分析: 有一个集合筛选出对这个集合影响较大的n个因素就是主成分分析。 主成分分析的目的是在于降维,其结果是把多个指标归约为少数的几个指标,这少数的几个指标的表现形式一般为原来指标体系中的某几个指标线性组合 逐步回归的目的是为了剔除影响目标值不显著的指标,其结果是保留原指标体系中影响显著的几个指标。 主成分分析本身往往并不是目的,而是达到目的的一种手段。因此,它多用在大型研究项目的某个中间环 ...
2019-01-19 16:59 0 2635 推荐指数:
R语言 逐步回归分析 逐步回归分析是以AIC信息统计量为准则,通过选择最小的AIC信息统计量,来达到删除或增加变量的目的。 R语言中用于逐步回归分析的函数 step() drop1() add1() #1.载入数据 首先对数据进行多元线性回归 ...
逐步回归分析是以AIC信息统计量为准则,通过选择最小的AIC信息统计量,来达到删除或增加变量的目的。 R语言中用于逐步回归分析的函数 step() drop1() add1() #1.载入数据 首先对数据进行多元线性回归分析 多元线性回归结果分析 通过观察 ...
主成分分析(Principal Component Analysis, PCA )是一种利用线性映射来进行数据降维的方法,并去除数据的相关性; 且最大限度保持原始数据的方差信息 线性映射,去相关性,方差保持 线性映射 \[F = \sum_{i=1}^{p}u_iX_i = u^{T ...
主成分分析的原理 主成分分析是将众多的变量转换为少数几个不相关的综合变量,同时不影响原来变量反映的信息,实现数学降维。 如何获取综合变量? 通过指标加权来定义和计算综合指标: \[Y_1 = a_{11} \times X_1+a_{12} \times X_2 + ... +a_ ...
学习视频:【强烈推荐】清风:数学建模算法、编程和写作培训的视频课程以及Matlab 老师讲得很详细,很受用!!! 定义 主成分分析(PrincipalComponentAnalysis,PCA), 主成分分析是一种降维算法,它能将多个指标转换为少数几 个主成分,这些主成分是原始变量的线性组合 ...
PCA(Principal Components Analysis)主成分分析是一个简单的机器学习算法,利用正交变换把由线性相关变量表示的观测数据转换为由少量线性无关比变量表示的数据,实现降维的同时尽量减少精度的损失,线性无关的变量称为主成分。大致流程如下: 首先对给定数据集(数据是向量 ...
。实际上,当一个样本只有两个变量的时候,主成份分析本质上就是做一个线性回归。公式本质上就是一条直线。 ...
https://blog.csdn.net/nanhaiyuhai/article/details/79304671 主成分分析又称主分量分析,由皮尔逊在1901年首次引入,后来由霍特林在1933年进行了发展。主成分分析是一种通过降维技术把多个变量化为少数几个主成分(即综合变量)的多元统计方法 ...