来源:http://blog.travel.ifeng.com/article/15992868.html 主成分分析的经典图像如下 直观的解释就是,在长箭头方向上,数据点要比短箭头方向上分散 ...
先回顾下主成分分析方法。PCA的最大方差推导的结论是,把数据投影到特征向量的方向后,方差具有极大值的。假如先把数据映射到一个新的特征空间,再做PCA会怎样 对于一些数据,方差会更好地保留下来。而核方法就是提供了一些映射到新的特征空间的选择。 假设这个映射为 phi x i , 数据从新的特征空间投影到向量w的方差,由前一节主成分分析方法可以得到 D w T frac n sum X T X w , ...
2019-01-19 13:03 0 1381 推荐指数:
来源:http://blog.travel.ifeng.com/article/15992868.html 主成分分析的经典图像如下 直观的解释就是,在长箭头方向上,数据点要比短箭头方向上分散 ...
KPCA,中文名称”核主成分分析“,是对PCA算法的非线性扩展,言外之意,PCA是线性的,其对于非线性数据往往显得无能为力,例如,不同人之间的人脸图像,肯定存在非线性关系,自己做的基于ORL数据集的实验,PCA能够达到的识别率只有88%,而同样是无监督学习的KPCA算法,能够轻松的达到93%左右 ...
PCA(Principal Components Analysis),它是一种“投影(projection)技巧”,就是把高维空间上的数据映射到低维空间。比如三维空间的一个球,往坐标轴方向投影,变成了 ...
一、理论概述 1)问题引出 先看如下几张图: 从上述图中可以看出,如果将3个图的数据点投影到x1轴上,图1的数据离散度最高,图3其次,图2最小。数据离散性越大,代表数据在所投影的维度上具 ...
有一个方法可以将它降到一维,二维或者人类的三维?确实有这种方法。 主成分分析(PCA)就是专门解决这个问 ...
主成分分析(Principal Component Analysis, PCA )是一种利用线性映射来进行数据降维的方法,并去除数据的相关性; 且最大限度保持原始数据的方差信息 线性映射,去相关性,方差保持 线性映射 \[F = \sum_{i=1}^{p}u_iX_i = u^{T ...
PCA: Principal Components Analysis,主成分分析。 1、引入 在对任何训练集进行分类和回归处理之前,我们首先都需要提取原始数据的特征,然后将提取出的特征数据输入到相应的模型中。但是当原始数据的维数特别高时,这时我们需要先对数据进行降维处理,然后将降维后的数据 ...
在高维数据上工作会碰到很多问题:分析很困难,解读起来困难,不能可视化,对于数据的存储也很昂贵。高维数据还是值得研究,比如有些维度是冗余,某一个维度其实是可以被其他几个维度的组合进行解释。正因为某些维度是相关的,所以高维数据内在有更低维的结构。降维方法就是探索数据的内在相关性生成一个压缩后的数据 ...