一、Series Pandas的核心是三大数据结构:Series、DataFrame和Index。绝大多数操作都是围绕这三种结构进行的。 Series是一个一维的数组对象,它包含一个值序列和一个对应的索引序列。 Numpy的一维数组通过隐式定义的整数索引获取元素值,而Series用一种显式定义 ...
一、Series Pandas的核心是三大数据结构:Series、DataFrame和Index。绝大多数操作都是围绕这三种结构进行的。 Series是一个一维的数组对象,它包含一个值序列和一个对应的索引序列。 Numpy的一维数组通过隐式定义的整数索引获取元素值,而Series用一种显式定义 ...
数据框(data.frame)是最常用的数据结构,用于存储二维表(即关系表)的数据,每一列存储的数据类型必须相同,不同数据列的数据类型可以相同,也可以不同,但是每列的行数(长度)必须相同。数据框的每列都有唯一的名字,在已创建的数据框上,用户可以添加计算列。 1 创建 ...
实际应用pandas过程中,经常会用到category数据类型,通常以string的形式显示,包括颜色(红,绿,蓝),尺寸的大小(大,中,小),还有地理信息等(国家,省份),这些数据的处理经常会有各种各样的问题,pandas以及scikit-learn两个包可以将category数据转化 ...
纵轴表示不同索引axis=0,横轴表示不同列axis=1 DataFrame类型创建 1.从二维ndarray对象创建 2.从一维ndarray对象字典创建 3.从列表类型的字典创建 ...
在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好。 1.DataFrame去重 但是对于pandas的DataFrame格式就比较麻烦,我看了其他博客优化了如下三种方案。 我们先引入 ...
先看一个非常简单的例子: 有什么方法可以将列转换为适当的类型?例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?理想情况下,希望以动态的方式做到这一点,因为可以有数 ...
先看一个非常简单的例子: 有什么方法可以将列转换为适当的类型?例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?理想情况下,希望以动态的方式做到这一点,因为可以有数 ...
数据类型object与category比较 category数据类型 官方文档是这样描述的: Categoricals 是 pandas 的一种数据类型,对应着被统计的变量。 1.Categoricals 是由固定的且有限数量的变量组成的。比如:性别、社会阶层、血型、国籍、观察时段 ...