)和Stochastic Method,其中DP方法可以分为Policy Iteration与Value Iterati ...
转自:https: www.cnblogs.com xiachongkun p .html,感谢分享 大名鼎鼎的蒙特卡洛方法 MC ,源自于一个赌城的名字,作为一种计算方法,应用领域众多,主要用于求值。蒙特卡洛方法的核心思想就是:模拟 抽样 估值。 蒙特卡洛的使用条件: .环境是可模拟的 .只适合情节性任务 episode tasks 。 蒙特卡洛在强化学习中的应用: .完美信息博弈:围棋 象棋 ...
2019-01-16 21:07 0 4301 推荐指数:
)和Stochastic Method,其中DP方法可以分为Policy Iteration与Value Iterati ...
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv: Learning, (2019) Abstract 深度RL算法需要大量经验才能学习单个任务。原则上,元强化 ...
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 论文笔记:https://zhuanlan.zhihu.com/p/85003758,https://zhuanlan.zhihu.co ...
强化学习读书笔记 - 11 - off-policy的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 ...
Meta-RL——Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji ...
强化学习读书笔记 - 09 - on-policy预测的近似方法 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 强化学习读书笔记 ...
前几天面试的时候被问到RL一些基础算法的区别,回来抽空做了一些整理方便加深理解。 On policy与off policy 为了解决强化学习中探索与利用的平衡问题,可以采用两个策略训练模型,一个策略为行为策略,用于保持探索性,提供多样化的数据,不断优化另一个策略(目标策略 ...
强化学习读书笔记 - 10 - on-policy控制的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 ...