原文:基于C#的机器学习--颜色混合-自组织映射和弹性神经网络

自组织映射和弹性神经网络 自组织映射 SOM ,或者你们可能听说过的Kohonen映射,是自组织神经网络的基本类型之一。自组织的能力提供了对以前不可见的输入数据的适应性。它被理论化为最自然的学习方式之一,就像我们的大脑所使用的学习方式一样,在我们的大脑中,没有预先定义的模式被认为是存在的。这些模式是在学习过程中形成的,并且在以更低的维度 如二维或一维 表示多维数据方面具有不可思议的天赋。此外,该 ...

2019-01-15 10:09 1 794 推荐指数:

查看详情

自组织映射神经网络

原理 聚类、高维可视化、数据压缩、特征提取 自组织映射神经网络本质上是一个两层的神经网络,包含输入层和输出层(竞争层)输出层中神经元的个数通常是聚类的个数 训练时采用“竞争学习”方式,每个输入在输出层中找到一个和它最匹配的节点,称为激活节点。紧接着用随机梯度下降法更新激活节点的参数 ...

Sun Nov 24 22:43:00 CST 2019 0 464
机器学习笔记】自组织映射网络(SOM)

什么是自组织映射? 一个特别有趣的无监督系统是基于竞争性学习,其中输出神经元之间竞争激活,结果是在任意时间只有一个神经元被激活。这个激活的神经元被称为胜者神经元(winner-takes-all neuron)。这种竞争可以通过在神经元之间具有横向抑制连接(负反馈路径)来实现。其结果是神经元被迫 ...

Sat Dec 02 05:08:00 CST 2017 0 17491
拓端tecdat|R语言中的SOM(自组织映射神经网络)对NBA球员聚类分析

原文链接:http://tecdat.cn/?p=19077 导入 自组织映射 (SOM)是一种工具,通过生成二维表示来可视化高维数据中的模式,在高维结构中显示有意义的模式。通过以下方式使用给定的数据(或数据样本)对SOM进行“训练”: 定义了网格的大小。 网格中的每个单元 ...

Fri Jan 22 07:59:00 CST 2021 0 331
SOM 自组织特征映射神经网络

参考:第4章 SOM自组织特征映射神经网络   生物学研究表明,在人脑的感觉通道上,神经元的组织原理是有序排列的。当外界的特定时空信息输入时,大脑皮层的特定区域兴奋,而且类似的外界信息在对应的区域是连续映像的。生物视网膜中有许多特定的细胞对特定的图形比较敏感,当视网膜中有若干个接收 ...

Tue Dec 12 23:42:00 CST 2017 1 7159
拓端tecdat|R语言使用自组织映射神经网络(SOM)进行客户细分

原文链接:http://tecdat.cn/?p=18726 自组织映射神经网络(SOM)是一种无监督的数据可视化技术,可用于可视化低维(通常为2维)表示形式的高维数据集。在本文中,我们研究了如何使用R创建用于客户细分的SOM。 SOM由1982年在芬兰的Teuvo Kohonen首次 ...

Sun Jan 03 05:43:00 CST 2021 0 325
自组织神经网络模型与学习算法

自组织神经网络又称为自组织竞争神经网络,特别适合于解决模式分类和识别方面的应用问题。该网络模型属于前向神经网络模型,采用无监督学习算法,其工作的基本思想是让竞争层的各个神经元通过竞争与输入模式进行匹配,最后仅有一个神经元成为竞争的胜利者,这一获胜神经元的输出就代表对输入模式的分类。 常用的自组织 ...

Fri Mar 17 23:38:00 CST 2017 0 1255
SOM自组织映射网络 教程

概述 SOM是芬兰教授Teuvo Kohonen提出的一种神经网络算法,它提供一种将高维数据在低维空间进行表示的方法(通常是一维或二维)。缩减向量维度的过程,叫做向量量化(vector quantisation)。此外,SOM网络能保留原有数据的拓扑关系。 一个用来直观感受SOM网络规则 ...

Sat Dec 19 22:47:00 CST 2015 1 6863
自组织竞争神经网络

竞争神经网络 竞争型网络只有两层,输出层又被称为核心层,在一次计算中只有一个输出神经元获胜,获胜的神经元标记为1,其余神经元标记为0. 竞争神经网络学习规则是由内星规则发展而来的Kohonen学习规则。 自组织特征映射网络 自组织特征映射网络(Self-Organizing ...

Sat Aug 25 22:50:00 CST 2018 0 1231
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM