原文:欧拉定理 、扩展欧拉定理(欧拉降幂原理)证明

所有 为次方 欧拉定理: a phi m mod m gcd a,m 设 到m中与m互质的数为 x , x , x , x phi m 令pi xi a 引理一:p之间两两模m不同余,x之间两两模m不同于 x两两模m不同样因为都小于等于m,一眼看出 反证:若pi pj mod m i j ,则a xi xj mod m gcd a,m ,则 xi xj mod m ,矛盾 所以p之间两两模m不同 ...

2019-01-14 21:07 0 570 推荐指数:

查看详情

定理证明扩展

费马小定理定理: 费马小定理:当 $ m $ 为质数且 $ a $ 不为 $ m $ 的倍数时有 $ a^{m-1}≡1\mod(m) $ 根据费马小定理可知: $ a^{m-2} $ 就是a在模m意义下的逆元. 定理:当 $ a $ , $ m $ 互质时, $ a^{\phi ...

Sat Mar 09 19:51:00 CST 2019 0 527
定理及其证明

定理及其证明[补档] 一.定理 背景:首先你要知道什么是定理以及函数。 下面给出定理,对于互质的a,p来说,有如下一条定理 \[a^{\phi(p)}\equiv1(mod\;p) \] 这就是定理 二.剩余系 定义:对于集合\(\{k*m+a|k ...

Sun Jan 19 01:38:00 CST 2020 1 1067
定理及其证明

我真的很逊,所以有错也说不定。 这篇很简,所以看不懂也说不定。 总觉得小满哥讲过这个证明,虽然身为老年健忘选手我大概是不记得什么了。。 定理:\(a^{\varphi(n)} \equiv 1 \ (mod \ n)\) ,其中 \((a,n) = 1\) 费马小定理:\(a^{p-1 ...

Wed Jul 17 16:53:00 CST 2019 0 746
扩展定理

扩展定理 \[a^b\equiv \begin{cases} &a^{b\%\varphi(p)} &\gcd(a,p)=1\\ &a^b &\gcd(a,p)\neq1,b<\phi(p)\\ &a^{b\%\varphi(p ...

Tue Mar 06 03:59:00 CST 2018 0 1184
函数|(扩展)定理|反演

也许更好的阅读体验 函数 定义 函数是 小于等于 x的数中与x 互质 的数的 数目 符号\(\varphi(x)\) 互质 两个互质的数的最大公因数等于1,1与任何数互质 通式 \(\varphi(x)=x\prod_{i=1}^n(1-\frac{1}{p_i ...

Sat Jun 29 23:52:00 CST 2019 7 1446
浅谈定理证明

自己在校内互坑赛出了一道定理的板子题,但是因为数据水变成了模拟数学题,真是一个悲伤的故事。。。 说一下定理证明吧,之前一直认为费马小定理证明很复杂,但是懂了定理之后就迎刃而解了。 首先,我们需要知道定理是什么: ​ 数论上的定理,指的是 \[a^x ...

Tue Oct 09 14:18:00 CST 2018 4 5699
定理、拓展定理及其应用(降幂法)

摘要   本文主要介绍了数论中的定理,进而介绍定理的拓展及应用,结合例题展示如何使用拓展定理实现降幂取模。   在数论中,定理,(也称费马-定理)是一个关于同余的性质定理。了解定理之前先来看一下费马小定理:     a是不能被质数p整除的正整数 ...

Thu Nov 01 20:52:00 CST 2018 0 3779
浅谈扩展定理

浅谈扩展定理 前置知识: \(1,\)数论定理这里 \(2,\)积性函数\(\phi\)的性质 \(3,\)以下引理 证明引理用到的引理 (一),引理 ​ 设\(x\)=\(lcm(a,b)\)。 ​ 可以分解如下 \[a=p_1^{a_1}*……*p_k^{a_k ...

Wed Nov 07 04:08:00 CST 2018 0 916
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM