卷积的目的是为了从输入中提取有用的特征。在图像处理中,有很多滤波器可以供我们选择。每一种滤波器帮助我们提取不同的特征。比如水平/垂直/对角线边缘等等。在CNN中,通过卷积提取不同的特征,滤波器的权重在训练期间自动学习。然后将所有提取到的特征“组合”以作出决定。 卷积的优势在于,权重共享和平 ...
本文主要参考来源:图像处理其实很简单 线性滤波和卷积的关系:线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵 有个高大上的名字叫卷积核 和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。 卷积或者协相关:对图像 ...
2019-01-12 15:26 0 2930 推荐指数:
卷积的目的是为了从输入中提取有用的特征。在图像处理中,有很多滤波器可以供我们选择。每一种滤波器帮助我们提取不同的特征。比如水平/垂直/对角线边缘等等。在CNN中,通过卷积提取不同的特征,滤波器的权重在训练期间自动学习。然后将所有提取到的特征“组合”以作出决定。 卷积的优势在于,权重共享和平 ...
git:https://github.com/linyi0604/Computer-Vision ...
1、池化层的作用 在卷积神经网络中,卷积层之间往往会加上一个池化层。池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量。使用池化层即可以加快计算速度也有防止过拟合的作用。 2、为什么max pooling要更常用? 通常来讲,max-pooling的效果更好 ...
图像处理中滤波和卷积是常用到的操作。两者在原理上相似,但是在实现的细节上存在一些区别。这篇博文主要叙述这两者之间的区别。 滤波 简单来说,滤波操作就是图像对应像素与掩膜(mask)的乘积之和。比如有一张图片和一个掩膜,如下图: 那么像素(i,j)的滤波后结果可以根据以 ...
双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。 双边滤波器之所以能够做到在平滑去噪的同时还能够很好的保存边缘(Edge Preserve),是由于其滤波器的核由两个函数生成 ...
本文主要介绍了高斯滤波器的原理及其实现过程 高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。其窗口模板的系数和均值滤波器不同,均值滤波器的模板系数都是相同的为1;而高斯滤波器的模板系数,则随着距离模板中心的增大而系数 ...
(k,l)即为卷积核,或者叫滤波器filter. 有几种常见的filter Normalize ...
。均值滤波器的处理结果是过滤掉图像中的“不相关”细节,其中“不相关”细节指的是:与滤波器模板尺寸相比较小的 ...