线性筛是一个很基础的算法,但是我一直没学。直到一次考试,因为O(n√n)会超时,用了表筛,结果被卡了代码长度,于是开始学习欧拉筛。 算法思路: 对于每一个数(无论质数合数)x,筛掉所有小于x最小质因子的质数乘以x的数。比如对于77,它分解质因数是7*11,那么筛掉所有小于7的质数*77,筛 ...
更新 想要快速地筛出一定上限内的素数 下面这种方法可以保证范围内的每个合数都被删掉 在 bool 数组里面标记为非素数 ,而且任一合数只被: 最小质因数 最大因数 非自己 这个合数 的途径删掉。由于每个数只被筛一次,时间复杂度为 O n 。 欧拉筛 先浏览如何实现再讲其中的原理。 实现 原理概述 代码中,外层枚举 i to n 。对于一个 i ,经过前面的腥风血雨,如果它还没有被筛掉,就加到质数 ...
2019-01-12 09:55 1 613 推荐指数:
线性筛是一个很基础的算法,但是我一直没学。直到一次考试,因为O(n√n)会超时,用了表筛,结果被卡了代码长度,于是开始学习欧拉筛。 算法思路: 对于每一个数(无论质数合数)x,筛掉所有小于x最小质因子的质数乘以x的数。比如对于77,它分解质因数是7*11,那么筛掉所有小于7的质数*77,筛 ...
昨天的考试跪的一塌糊涂:第一题水过,第二题带WA的朴素,最后题忘了特判左端点全跪,分数比起预计得分整整打了个对折啊! 步入正题:线性筛(欧拉筛) 一般的筛法(PPT里叫埃拉托斯特尼筛法,名字异常高贵)的效率是O(NlglgN)(其实很接近O(n)啊!),对于一些例如N=10000000的残暴 ...
前言 蒟蒻最近准备狂补数学啦TAT 基于筛素数,可以同时快速求出欧拉函数。于是蒟蒻准备从这里入手,整理一下实现的思路。 筛素数及其一种改进写法 传统筛素数的做法(埃式筛)是,利用已知的素数,去筛掉含有此质因子的合数,十分巧妙。由于不是本文的重点,就只贴一下代码吧 复杂度不会证 ...
算法介绍:欧拉筛法是在O(N)线性时间内实现素数筛选的优秀算法。 算法思路:总体上与Eratosthenes筛法类似,也是用较小的数筛去较大的合数。 关键思路在于:每一个合数都保证是被其最小的质因子筛去的,下简称称该条件为线性条件。 结合代码分析: 对每一个数i,无论其是否为质数 ...
当数据量很大时,我们不能一个一个去判断每个数是否为素数,那么我们可以采用欧拉筛来做 由于埃氏筛会存在某个合数多次被筛的情况,所以 欧拉筛的核心思想就是:让每个合数只被它的的最小质因子筛选一次,没有重复 欧拉筛:时间复杂度为O(n),所以也称为线性筛,但只能筛到1e8这么大 ...
min_25 筛是由 min_25 大佬使用后普遍推广的一种新型算法,这个算法能在 \(O({n^{3\over 4}\over log~ n})\) 的复杂度内解决所有的积性函数前缀和求解问题(个人感觉套上素数定理证明的复杂度的话应该要把下面的 log 改成 ln ,不过也差不多 ...
素数筛,其实是将一堆数中的合数给筛掉,留下素数的一个过程。求某个大小范围内的素数个数,是用到素数筛的最最基础的问题。 首先要给出关于素数的最基本的知识:判断单个数是否为素数。 判断一个整数n是否为素数 首先i从2开始枚举到 \(\sqrt{n}\) ,然后一旦n可以被i整除,就返回 ...
求最大公约数的最常用的算法是欧几里得算法,也称为辗转相除法。问题定义为求i和j的最大公约数gcd(i,j),其中i和j是整数,不妨设i>j。算法可以递归的表示: 1.如果j能整除i,那么 ...